
#IEEESecDev https://secdev.ieee.org/2020

ReViCe: Reusing Victim Cache to
Prevent Speculative Cache Leakage

Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Neophytos Christou*,
Abdullah Muzahid, Chia-Che Tsai, Eun Jung Kim

Texas A&M University *University Of Cyprus

1

Vulnerable Performance Optimization

¨ Attackers can access the secret through speculative execution.
¨ Attackers transmit the secret through cache side channel.

2

Speculation
Cache Memory

Problem: Speculation Based Attacks (Spectre V1)

3

Cache Blocks

Cache Side Channel
Leak Secret

Install

Mis-speculative
Execution

Due to Mistraining

Victim Function

Array[secret];

Non-speculative
Execution

Attacker

Miss

Miss

Hit

For i = 0 to n
T1 = time();
Array[i];
T2 = time() – T1;

Solution: ReViCe - An Undo-Based Mitigation

4

Cache Blocks

Cache Side Channel
Leak SecretMis-speculative

Execution
Due to Mistrain

Victim Function

Install
Array[secret];

Non-speculative
Execution

Attacker

Miss

Miss

Hit

For i = 0 to n
T1 = time();
Array[i];
T2 = time() – T1;

Allow Early Update
Hide Using Jitter

Restore
Using Victim Cache

ReViCe – Motivations

¨ Early Update on Response
¨ Penalized by incorrectly speculated load.

Prior work – Redo VS. Undo

6

Prediction is very
accurate

¨ Delay update until Branch resolution
¨ Penalized by correctly speculated load.

Branch
 Predictio

n

Specula
tive

 Load
Response

Branch
 Re

solutio
n

Early
Update

Undo - [Saileshwar et al. MICRO `19]

Delayed
Exposure

Branch
 Predictio

n

Specula
tive

 Load
Response

Branch
 Re

solutio
n

Start
Delayed Update

Redo - InvisiSpec [Yan et al. MICRO `18]

Commit

Prior work – CleanupSpec [Saileshwar et al. MICRO `19]

7

L2$

L1D$

Core

B InstallEviction

A

Speculative
Executions

A

L2$

L1D$

Core

A

Cleanup on
Mis-Speculation

B InvalidationB

Restore

Access cache block A

A

A

No
Speculation

During
Speculation

Appendix A

Threat model

¨ Mis-Speculative load can access the secret.
¨ Cache side channel transmits the secret.
¨ Attacker has access to the source code of the victim program
¨ OS is correct and trusted by the victim.

¨ Out of Scope
¤ Other side channels: TLB, Branch Prediction History
¤ Foreshadow

8

ReViCe - Design

Jitter – Mimics cache miss to hide speculation

10

Cache

Core

Speculative Line [A]

Mimics Cache miss

Allow Early Update
Hide Using Jitter

Restore
Using Victim Cache

Load [A]
Response after Jitter length

Speculative
Load [A]

Victim Cache – Confirm Correct Speculative Changes

11

Cache

Core

Victim Cache

Line A DataTagARI

Conform [B]Specaultive
Load [B]

Line A DataTagB TagA

VTagSTag

Victimize

Line B DataTagB

Update
Replacement state
[Xiong et al. HPCA 20]

Line B DataTagB

Clear STag

-

Consistent access latency is
guaranteed.

Victim Cache – Restore Speculative Changes

12

Cache

Core

Victim Cache

Line A DataTagARI

Restore [B]Specaultive
Load [B]

Line A DataTagB TagA

VTagSTag

Victimize

Line B DataTagB

Restore

Line A DataTagA

Delayed Downgrade Coherence State [Yao et al. HPCA `18]

13

Shared Cache

L1

Core 0 (Requester)

E/M

Core 1 (Owner)

On-chip Network

Owner

L1

Core 0 (Requester)

S

Core 1 (Sharer)

On-chip Network

S

Downgrade E/M à S

ReViCe – Evaluation

ReViCe – Evaluation Methodology

¨ Simulation based
¤ gem5 full system simulator
¤ Out of order processor (Single, Octa cores)

¨ Proof-of-concept (4 x 3 x 2 = 24 attack programs)
¤ Four Spectre Variants
¤ Three Cache Side Channels
¤ Same Core and Cross Cores

¨ Performance evaluation
¤ SPEC2017, PARSEC
¤ Compared against InvisiSpec, Selective Delay, CleanupSpec

15

PoC and Performance

ReViCe – Performance Overhead (SPEC2017)

16

Details in the paper

Dummy Request and Fixed
window Size

Redo-Based Undo-Based

ReViCe – Conclusion

¨ Problem: Mitigating Speculation based attack leveraging cache side channel.
¨ Prior works: Either high overhead or incomplete
¨ Key insights: Hide speculation using Jitter and Restore from Victim Cache.
¨ ReViCe is secure with better performance.

17

Thank you

Sungkeun Kim
ksungkeun84@tamu.edu

