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Vulnerable Performance Optimization 

¨ Attackers can access the secret through speculative execution.
¨ Attackers transmit the secret through cache side channel.
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Problem: Speculation Based Attacks (Spectre V1)
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Solution: ReViCe - An Undo-Based Mitigation
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ReViCe – Motivations 



¨ Early Update on Response
¨ Penalized by incorrectly speculated load.

Prior work – Redo VS. Undo
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Prediction is very 
accurate

¨ Delay update until Branch resolution
¨ Penalized by correctly speculated load.
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Prior work – CleanupSpec [Saileshwar et al. MICRO `19]
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Threat model

¨ Mis-Speculative load can access the secret.
¨ Cache side channel transmits the secret.
¨ Attacker has access to the source code of the victim program
¨ OS is correct and trusted by the victim.

¨ Out of Scope
¤ Other side channels: TLB, Branch Prediction History
¤ Foreshadow
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ReViCe - Design



Jitter – Mimics cache miss to hide speculation
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Victim Cache – Confirm Correct Speculative Changes 
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Victim Cache – Restore Speculative Changes 
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Delayed Downgrade Coherence State [Yao et al. HPCA `18]
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ReViCe – Evaluation



ReViCe – Evaluation Methodology

¨ Simulation based
¤ gem5 full system simulator
¤ Out of order processor (Single, Octa cores)

¨ Proof-of-concept (4 x 3 x 2 = 24 attack programs)
¤ Four Spectre Variants
¤ Three Cache Side Channels
¤ Same Core and Cross Cores

¨ Performance evaluation
¤ SPEC2017, PARSEC
¤ Compared against InvisiSpec, Selective Delay, CleanupSpec
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ReViCe – Performance Overhead (SPEC2017)
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Details in the paper
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ReViCe – Conclusion

¨ Problem: Mitigating Speculation based attack leveraging cache side channel.
¨ Prior works: Either high overhead or incomplete
¨ Key insights: Hide speculation using Jitter and Restore from Victim Cache.
¨ ReViCe is secure with better performance.
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