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Abstract—For a distributed last level cache (LLC) in a large
multicore chip, the access time to one LLC bank can significantly
differ from that to another. The disparity in access time is due
to the different physical distances to the target LLC slices. In
this paper, we demonstrate the possibility of exploiting such
a distance-based side channel, by timing a vulnerable version
of AES decryption and extracting part of the secret keys. We
introduce several techniques to overcome the challenges of the
attack, including using multiple attack threads to ensure LLC
hits of the vulnerable memory locations and to time part of the
decryption function.

We further propose CAMOUFLAGE, an efficient, architectural
defense for the proposed distance-based side-channel attack.
At runtime, when a potentially leaking memory instruction is
executed by a victim function, CAMOUFLAGE uses a combination
of jitter and bypass mechanisms to eliminate any LLC hit time
difference due to the distance and thereby, prevent the attack.
We evaluate two versions of CAMOUFLAGE - CAMOUFLAG-
EJITTER and CAMOUFLAGEBYPASSusing the Gem5 simulator with
PARSEC and Rodinia benchmarks and show that they incur
performance overheads of 14.14% or none over the baseline.

I. INTRODUCTION

Large-scale multicores are increasingly prevalent due to
the shrinkage of process technology. Systems with 64 or
more cores have become the backbone of cloud computing
or high-performance computing. AMD, Intel or ARM has
64 [1], 72 [3] and 80 core [17] processors respectively in
the market. To meet the demand of so many cores, large-
scale multicores are equipped with a large last level cache
(LLC). AMD Ryzen comes with 256 MB LLC whereas Intel
Xeon Phi 7200 series has 36 MB LLC. Due to the physical
and manufacturing limitations, such LLCs are distributed over
multiple banks connected through a network-on-chip (NoC)
to reduce access latency and improve core isolation. However,
with a distributed LLC, a core may incur different latency
when accessing banks of different physical distances. This
type of architecture is referred to as a Non-Uniform Cache
Access (NUCA) architecture. In this paper, we set out to
investigate whether distance-induced non-uniform latency to
NUCA caches can lead to security vulnerabilities and if so,
how we can defend against those.
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Fig. 1: LLC hit time measured in cycles when accessing the
same physical address (0x1000000000) from different cores
in the Intel Xeon Phi 7290 CPU. The latency numbers are
averaged over 10,000 samples.

A. A Distance-Based NUCA Side-Channel Attack

Cache side-channel attacks [4], [10], [31], [43], [50], [52],
[54], [59], [61] are proven to be a prominent threat to data se-
curity, especially during the past few years. The common form
of cache side-channel attacks involves timing the cache access
latency which depends on the state of the target cache lines.
Take Flush+Reload [21], [22], [27], [62], [68], [69], [71] for
example. The attacker tries to observe the target shared lines
being accessed by the victim program, by detecting whether
reloading the line incurs a cache hit or miss. Recent work
investigates how network contention in NUCA architecture
can be utilized to create timing differences and subsequently,
a covert and side-channel [15], [63].

In this paper, we demonstrate a vastly different cache side-
channel attack that relies on difference in physical distance
among the LLC banks. Algorithm 1 shows the pseudo-code
of a potential attack using this distance-based NUCA side-
channel. In this example, an address is determined by the
victim according to a specific bit of a secret. The address
can be mapped to the LLC bank of the nearest core when
the bit is 0, or the farthest core when the bit is 1. Therefore,
by timing the access latency, an attacker can infer the secret
bit. To further illustrate this scenario, Figure 1 shows access
latency to the same address from different cores. We collected
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Algorithm 1: Psuedocode of a victim function which
is vulnerable to a side-channel based on the difference
of LLC access time due to distance.

Input: BitMask
Data: Secret

1 if (Secret & BitMask) == 1 then
2 Addr = AddrNear mapped to the LLC bank of the nearest core;
3 else
4 Addr = AddrFar mapped to the LLC bank of the farthest core;

5 Load(Addr);

these latency numbers from the Intel Xeon Phi 7290 CPU.
This CPU model belongs to Intel’s Knights Landings line and
has a many-core architecture with at least 64 cores (the CPU
we tested has 72 cores). The figure shows that the LLC hit
latency for the same address has a range between 280–350
cycles, and this pattern is generally stable across cores. Ideally,
if the attacker can measure the access latency in the victim
code shown in Algorithm 1, he/she will be able to guess the
secret bit by telling whether the addresses fall into a near or
far LLC bank. We demonstrated the attack in Intel Xeon Phi
7290 using AES code. We addressed several challenges for the
attack, namely (i) the overlapping of memory accesses to LLC,
and (ii) the difficulty of timing only a portion of the decryption
operation. Our proof-of-concept (POC) attack code is able to
accurately extract the lower 4 bytes of any AES key with 4,000
decryption trials using a sequence of random plaintexts.

B. Mitigating a Distance-Based NUCA Side-Channel

To defend against a timing channel such as the distance-
based NUCA channel, one simple strategy is to make the
latency of all relevant operations constant so that the attacker
cannot infer any access pattern from the time differences.
Based on this observation, we propose two strategies– CA-
MOUFLAGEJITTER and CAMOUFLAGEBYPASS. Collectively, we
refer to the proposed strategies as CAMOUFLAGE.

For CAMOUFLAGEJITTER, our approach is to make all oper-
ations as slow as the slowest operation in the system; that
is, if we make the latency of accessing any LLC bank to
be as long as the longest latency of accessing the farthest
bank, the system will not exhibit any timing difference. To
make any LLC bank latency equal to the longest latency
(say, Tworst ), CAMOUFLAGEJITTER adds some jitter with the
original access latency (say, Torig). An appropriate amount of
jitter (i.e., Tworst −Torig) is added right before the LLC bank
sends the requested data back to the core. CAMOUFLAGEJITTER

is simple and intuitive but hurts performance as it slows
down LLC accesses significantly. To reduce the performance
overhead of our defense, we must not make the constant
latency of the system equal to Tworst . Therefore, we propose
CAMOUFLAGEBYPASS.

To design CAMOUFLAGEBYPASS, we make the following
observation - instead of making every LLC access to have the
latency Tworst , we can reduce the worst case latency to much
lower latency and then, make every LLC access latency equal
to that. Luckily, there have been many studies on reducing

packet latency in NoC designs. One class of techniques, called
Router Bypass [14], [38], [39], [41], [44], [55], [67], [73],
opens up an opportunity for speeding up the accesses to the
farthest banks, thereby reducing the worst case latency. For
instance, by applying the bypass technique to the furthest
bank, we can reduce Tworst latency to a much lower latency
Tlow. CAMOUFLAGEBYPASS eliminates LLC access latency dif-
ference by making every latency equal to Tlow. To achieve
that, CAMOUFLAGEBYPASS works by adding jitter to accesses
in nearby LLC banks (since access latency of nearby banks
is lower than Tlow) and a combination of bypass and jitter (if
needed) to accesses in the distant LLC banks. Jitter and bypass
mechanism is applied by modifying the NoC router hardware.
This is the first work that uses router bypass mechanism for
a security purpose.

C. Contributions

We make the following contributions:
• We demonstrated a new distance-based side-channel at-

tack on NUCA on an Intel Knights Landing CPU against
a vulnerable AES implementation. We addressed several
challenges related to memory ordering and timing, and
can accurately extract the lower 4 bytes of the AES key
with only 4,000 decryption trials using a sequence of
random plaintexts.

• We propose two defenses - CAMOUFLAGEJITTER and CA-
MOUFLAGEBYPASS, to ensure constant-time LLC accesses
with a combination of router bypass and jitter. This is the
first use of router bypass mechanisms for security.

• We implemented our proposed defenses in the Gem5 [8]
architectural simulator. We experimented with widely
used PARSEC [7] and Rodinia benchmarks [13]. Our
results indicated that on average, with the minimal
NoC hardware modification, CAMOUFLAGEJITTER adds
14.14% runtime overhead to the execution time of a
baseline vulnerable system while CAMOUFLAGEBYPASS

does not cause any runtime degradation at all (instead
improves performance by an average of 6.4%).

II. BACKGROUND AND RELATED WORK

In this section, we explain the background of Non Uniform
Cache Access (NUCA) Architecture, Network-on-Chip (NoC),
router bypass, and cache side-channel attacks.

A. Non Uniform Cache Access Architecture

With the increasing demand for bridging the speed disparity
between the CPU and the main memory, cache capacity
keeps increasing to improve cache hit rate [1], [29], [48].
In addition, increasing bandwidth demand and limitation in
number of ports result in physically separated banked last
level caches (LLC) that are connected by a network-on-chip
(NoC). Such a physical layout introduces the paradigm of non-
uniform cache access (NUCA) architecture as cache accesses
to different LLC banks from the same core can have non-
uniform access latency [32]. Among several interconnection
technologies, ring bus design in Intel Nehalem supports up to



8 core Xeon processors [36], which recently upgraded to mesh
interconnect [26], [35] for Intel’s Skylake-SP and Skylake-X
processors that have 28 cores [47].

B. Network-on-Chip and Router Bypass

In a network-on-chip (NoC), Network Interfaces (NIs) con-
nect the core/cache tile to the network that is formed by a set
of routers in a certain topology, such as mesh. In general, a
packet travels from the source tile’s NI through the network
routers to the destination tile’s NI. A router consists of several
pipeline stages, including routing computation, virtual channel
allocation, switch arbitration, and switch traversal, followed by
link traversal. Therefore, packets need to travel hop-by-hop
basis while going through a complex router pipeline.

To reduce packet latency, router bypassing has been pro-
posed in various forms in many NoC designs [38], [40].
Express virtual channel (EVC) is used to virtually bridge
two nodes across multiple bypass routers so that a packet
can traverse a bypass router in one cycle without virtual
channel and switch arbitration, thereby effectively reducing
router pipeline stages [40]. Following EVC, SMART [38] was
proposed to enable a single-cycle data path from the source
to the destination. So a packet can use SMART to physically
bypass multiple routers in one cycle to further reduce latency.
In this work, we leverage the bypass mechanism to selectively
regulate packet latency for mitigating NUCA attacks. This is
the first use of bypass mechanism for a security issue.

C. Cache Side-Channel Attacks

Side-channel attacks in hardware exploit observable changes
to steal a secret. Hit/Miss or access latency of any memory
structure such as TLB, Cache, and DRAM are examples of
observable changes. The attacker of a side channel correlates
the observable changes to the secret. There are side-channel
attacks and countermeasures at different levels of the system.
Cache side-channel attacks are one of the most common
methods for attackers. Most cache side-channel attacks are
categorized based on how they prepare the transmission and
how they measure the changes in the cache.

Prime+Probe [4], [10], [31], [43], [50], [52], [54], [59],
[61]: The attacker installs data to cache lines and observes
whether those lines are evicted by the victim. The attacker
can infer the victim’s behavior by monitoring such evictions.

Flush+Reload [21], [22], [27], [62], [68], [69], [71]:
Flush+Reload is opposite of Prime+Probe in that the attacker
flushes the cache lines using the CLFLUSH instruction and
checks if cache hit happens later. This attack requires that
both the attacker and the victim share the memory to access
the same cache line.

Evict+Reload [21]: Evict+Reload and Flush+Reload are
similar as they evict cache lines during the preparation phase.
The attacker installs many dummy data to evict the targeted
cache lines and later checks if the dummy cache lines are
evicted by the victim.

Evict+Time [26]: The attacker runs the victim programs
multiple times with or without evicting some cache lines.

By measuring the execution time difference, the attacker can
determine if the victim uses the evicted cache lines.

Flush+Flush [20]: Flush+Flush attack exploits the execu-
tion time difference of CLFLUSH instruction depending on
cache line states. For example, if the target cache line of
CLFLUSH is shared by other caches, it will take more cycles
to flush all of them than flushing the cache line owned by a
single cache.

To mitigate above mentioned side-channel attacks, many
approaches have been proposed. First, modifying the timing
such as CPU cycles can affect the attacker’s decoding of the
transmitted data [18], [70]. Second, shared resources such
as LLC can be isolated so that attackers cannot access the
victim’s resources [33], [34], [42], [64]. Finally, an Oblivious
RAM (ORAM) design [45], [60] can eliminate the access
patterns from a CPU or a program, and thus prevents a
majority of side-channel attacks including the distance-based
NUCA attacks. However, ORAM generally incurs significant
overheads for shuffling the memory locations constantly after
every access.

D. NoC-based Side-Channel Attacks

In MPSoCs, NoC has been leveraged for Prime+Probe
cache side-channel attacks [57]. The attackers monitor the
throughput changes to identify when the cryptography victim
accesses the cache for key lookups. Then the attacker can
start the probe phase for a successful attack. For mitigation,
Gossip NoC was proposed to switch routing algorithms when
abnormal network behavior is detected [57]. More recently,
Paccagnella et al. developed several timing side-channel at-
tacks on the CPU ring interconnect by exploiting NoC and
cache contention [53]. A follow-up work investigates how
network contention in 2D Mesh in a NUCA machine can
lead to timing difference and subsequently, a covert and side-
channel [15], [63]. However, there is no existing work that
exploits differences in physical distances in a NUCA machine
to create a side channel. As a countermeasure, prior works
segregates or distributes network traffic [15], [65]. However,
it fails to mitigate the non-uniformity in NUCA access time
due to distance.

III. THREAT MODEL AND ASSUMPTIONS

This work focuses on the attack and defense of a specific
timing channel inside the NoC architecture. This timing chan-
nel is derived from the latency difference of LLC hits in a
NUCA architecture due to differences in physical distances.
Distinct from other side-channel works based on contention
within the NUCA architecture [15], the distance-based attack
requires the attackers to time at least part or the entirety
of the victim functions known to access data in different
cache banks in NUCA. This can be done either through
timing the invocation of the victim function, likely inside
the same context, or through timing the interaction with the
victim function, such as sending or receiving messages through
the network or inter-process communication (IPC), detecting
modification of shared variables, or other side-channels. The



attackers may or may not have access to an accurate timing
function (e.g., rdtsc), and if not, they can use alternatives
such as counting threads [58]. The proposed attack and defense
techniques assume a trusted CPU and OS which are not
inherently malicious. The CPU and the OS may be vulnerable
to attacks, but no escalation to root (admin) privileges will be
possible or necessary for conducting the attacks. The victim
program/function can be triggered or invoked by the attackers
and must interact with the attackers either remotely or locally.
We assume that the attackers have at least remote access
to the machine where the victim is running and can launch
more than one thread on selected cores. The attackers’ threads
include one contention thread on the same core as the victim
program, one preparation thread on a separate core, and one
timing thread for timing the victim operations. In addition, the
attacker has the access to the source code of the victim pro-
gram, and has knowledge of the possible access patterns within
the victim program (i.e., the conditions that cause access to
near or far LLC banks), through either reverse-engineering the
microarchitecture or profiling the victim program.

IV. A DISTANCE-BASED NUCA SIDE-CHANNEL ATTACK

In this section, we describe the steps for realizing a distance-
based NUCA LLC side-channel attack. Then, we demonstrate
an attack example using the AES decryption function. We used
the Intel Xeon Phi 7290 CPU.

A. Intel Xeon Phi 7290 LLC Organization

The CPU has a floorplan shown as Figure 2, where its 72
physical cores (or 288 physical threads with hyperthreading)
are distributed across 38 tiles [25]. It is known that not all
tiles have active physical cores on them, and the physical CPU
IDs—the IDs which are typically obtained through ACPI and
are recognized by OS—are arbitrarily assigned to tile in an
order which tends to alternate between the four quadrants. The
CPU employs a directory-based cache coherence mechanism
using MESIF protocol [19] with a distributed directory system.
Each tile includes a Caching/Home Agent (CHA) in charge of
a portion of the directory. Each time a core requests a cache
line due to an L1 miss, a corresponding CHA (distributed
directory) is queried based on the line address. If the cache
line is present in the LLC bank of a tile, the CHA will instruct
the tile to forward the data to the requester. Thus, two sources
of latency contribute to the difference in LLC hit times; one
due to different distance to the CHA location, and the other
due to different distance to the forwarding tile. Even if two
cache lines reside in the same forwarding tile, their LLC hit
times can differ if two different CHA handles the cache lines.

B. Identifying Far-Tile and Near-Tile Accesses

To perform the attack, we need to identify addresses that
are mapped to CHA on a far tile or a near tile. To know such
addresses for the victim program, one must know the core(s)
which the victim program is assigned to, and which virtual
addresses in the victim program are mapped to a CHA on a
far tile or a near tile.
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Fig. 2: Knights Landing Floorplan Block Diagram [25]. Blue
rectangles denote active tiles. Grey rectangles denote tiles with
disabled cores. One tile is zoomed to show that it contains two
cores and a CHA/LLC

One possible method for identifying the far-tile and near-
tile addresses is to reverse-engineer the mapping function of
the physical addresses to the tiles where the CHA and the
LLC slices of target lines reside. We argue that the reverse-
engineering is not necessary for this attack. First of all, the
reverse-engineering process can be extremely complex, given
that multiple bits of a physical address can be involved and
the number of tiles is not a power of two. Second, in order to
know which virtual addresses belong to far tiles or near tiles,
one must know the mapping between the virtual addresses
and the physical addresses. The Linux system provides a
system interface through /proc/[pid]/pagemap to show
the page types and page mappings, but the physical page frame
numbers of each process are only visible to a privileged user.

Instead of reverse-engineering the LLC mappings, we use
a strategy we call Profile and Remap. The strategy contains
two steps, and requires an attacker process to run on the same
tile (not necessarily the same physical core or thread) with
the victim program. The attacker process will first allocate
a certain amount of virtual addresses and access them. The
attacker process uses a helper thread that will access the
addresses first to bring them to the LLC. The CPU tile of this
LLC will act as the forwarding tile. When another thread of
the attacker process accesses those addresses, LLC hits occur,
and depending on the distance of CHA, different addresses
will have different LLC hit times. Based on the LLC hit
times, we can identify two sets of the virtual addresses in
the attacker process, ones that are mapped to far tile’s CHA,
VAfar and ones that are mapped to near tile’s CHA, VAnear.
Then, the attacker can force the OS to remap the physical
pages backing these virtual addresses to the target virtual



addresses in the victim program. Here, we adopted a technique
called Flip-Feng-Shui, which is commonly used to control the
physical memory layout of the victim process for Rowhammer
attacks [56]. The technique requires unmapping a virtual page
in the attack process right before the victim program accesses
a virtual page for the first time so that the OS will reuse the
physical page from the attack process because it was recently
added to the free page list. Thus, the remapping can be done
without any root privilege.

C. Ensuring an L1D Miss but an LLC Hit

To leak information through the distance-based NUCA
side channel, the victim program must exhibit data-dependent
access patterns across LLC tiles so that the attacker can time
the victim program and infer the secret based on the difference
in access time. Such an attack requires L1D misses but LLC
hits on specific addresses. If accessing certain addresses in the
victim program causes L1D hits, there will be no difference in
the access time. On the other hand, if accessing the addresses
causes both L1D and LLC misses, the CPU will send requests
to the DRAM and the access latency will again be not
dependent on the address. Therefore, it is crucial to keep the
target addresses in the LLC but not in the local L1D cache of
the core where the victim program is running.

Let us consider two different cores (say, core i and j) in two
different tiles. Suppose the victim function runs on core i. The
attacker’s goal is to ensure that a cache line, say L, will cause
an L1D miss but LLC hit when accessed from core i. There
are two approaches to do that. First, the attacker can force core
i to access L and a number of other cache lines that fall in the
same set in L1D so that L eventually gets evicted from L1D of
core i but still remains in the LLC. To use this approach, the
attacker can run some code on core i before the victim function
so that L remains in LLC but not in L1D of that core’s tile.
On top of that, the attacker requires knowledge about the L1D
indexing function and replacement policy. Second, the attacker
can execute a thread on some other core (such as core j) that
accesses the cache line L. As a result, L will reside in the L1D
cache and LLC bank associated with core j’s tile. When the
victim function runs on core i and accesses L, it will have a
miss in its own L1D cache but the line will be found in the
LLC of core j’s tile. In other words, core i will have an LLC
hit on L. Note that subsequent accesses from core i to the
same cache line will cause L1D hits. In our paper, we follow
this second approach for its simplicity.

D. Attack Example: AES in OpenSSL

The traditional AES implementation uses a number of
transformation tables, known as T tables, to represent the
computation and permutation of individual bytes during mul-
tiple rounds (9 rounds for AES-128, 11 rounds for AES-
192, or 13 rounds for AES-256). So far, these T tables have
been the targets of exploitation in many side-channel attacks
to leak the AES secret keys [6], [9], [23], [28]. Take the
AES implementation (aes_core.c) in OpenSSL 1.1.0f for
example. We show a simplified version of the AES decryption

1 static const u32 Td0[256] = ...;
2 static const u32 Td1[256] = ...;
3 static const u32 Td2[256] = ...;
4 static const u32 Td3[256] = ...;
5 static const u8 Td4[256] = {
6 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
7 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
8 ...
9 };

10

11 void AES_decrypt(u32 *in, u32 *out, u32 *rd_key) {
12 u32 s0, s1, s2, s3, t0, t1, t2, t3;
13 s0 = in[0] ˆ rk[0];
14 s1 = in[1] ˆ rk[1];
15 s2 = in[2] ˆ rk[2];
16 s3 = in[3] ˆ rk[3];
17 ...
18 /* The last round */
19 out[0] = ((u32)Td4[(t0 >> 24) ] << 24) ˆ
20 ((u32)Td4[(t3 >> 16) & 0xff] << 16) ˆ
21 ((u32)Td4[(t2 >> 8) & 0xff] << 8) ˆ
22 ((u32)Td4[(t1 ) & 0xff]) ˆ
23 rd_key[0];
24 out[1] = ((u32)Td4[(t1 >> 24) ] << 24) ˆ
25 ((u32)Td4[(t0 >> 16) & 0xff] << 16) ˆ
26 ((u32)Td4[(t3 >> 8) & 0xff] << 8) ˆ
27 ((u32)Td4[(t2 ) & 0xff]) ˆ
28 rd_key[1];
29 out[2] = ((u32)Td4[(t2 >> 24) ] << 24) ˆ
30 ((u32)Td4[(t1 >> 16) & 0xff] << 16) ˆ
31 ((u32)Td4[(t0 >> 8) & 0xff] << 8) ˆ
32 ((u32)Td4[(t3 ) & 0xff]) ˆ
33 rd_key[2];
34 out[3] = ((u32)Td4[(t3 >> 24) ] << 24) ˆ
35 ((u32)Td4[(t2 >> 16) & 0xff] << 16) ˆ
36 ((u32)Td4[(t1 >> 8) & 0xff] << 8) ˆ
37 ((u32)Td4[(t0 ) & 0xff]) ˆ
38 rd_key[3];
39 }

Fig. 3: The vulnerable, fully unrolled (i.e., non-iterative) code
for AES decryption in aes_core.c of OpenSSL 1.1.0f. The
source code is simplified for brevity, and only shows the initial
values of Td4 and the last round of AES_decrypt.

code in Figure 3. Since AES is a block cipher, in each
invocation, the AES_decrypt function will take a block of
128 bits as the input and decrypt it using a 128-bit, 192-bit,
or 256-bit key. Note that AES_decrypt and AES_encrypt
have very similar structures, except that they use two different
sets of T tables, Td0–Td4 and Te0–Te4, respectively, and
that AES_decrypt has an extra round that uses only Td4.
Generally, the last round of AES_decrypt has been targeted
by cache side-channel attacks, such as FLUSH+RELOAD,
since the attacker only needs to detect the change of cache
states during the last round and can avoid any noise from
prior rounds.

Note that the attack on AES decryption requires that the
plaintexts are either known or chosen by the attacker. Take
FLUSH+RELOAD [22] for an example. The attacker first
clflush()es all the elements from Td4 and then waits for
AES_decrypt in the victim program to access the elements
of Td4 and to bring the corresponding cache lines into the
cache. Then, by timing the latency of all Td4 elements, the
attacker can tell which cache lines are recently brought into
the cache and thus can guess the potential values of t0–t3 in
the last round. Finally, by XOR’ing the known plaintext as the
output of the last round and the potential values of the Td4



elements accessed, the attacker can guess the potential lowest
32 bits of the decryption key.

The NUCA distance-based side-channel attack on AES is
different from FLUSH+RELOAD and similar attacks since it
cannot infer exactly which line is accessed by the function
and brought into the cache. Instead, the attacker can only time
the victim function, AES_decrypt, and use the latency to
extract the bits inside the key. Specifically, this attack faces two
major challenges: (1) Overlapping of multiple cache loads:
An out-of-order CPU can issue multiple load instructions into
the pipeline, and send multiple requests to the Load Store
Queue (LSQ). Although the Total Store Ordering (TSO) model
of most Intel CPUs forbids reordering of the load requests,
requests can still be sent while the prior requests await
responses. As a result, the latency of multiple load instructions
without mutual dependency can overlap, and thus, the highest
latency of individual loads will dominate the overall latency.
(2) Timing difficulty with multiple decryption rounds: From
the attacker’s point of view, it is difficult to only time the
last round of decryption where only elements of Td4 and the
lower 4 bytes of the key are accessed. This is because timing
the entire AES_decrypt function will include the time of
earlier rounds of decryption making it impossible to determine
how much time it takes only to access Td4 entries.

To overcome the challenges, we formulate the attack as
follows: First, the attacker runs three threads–one thread
running a loop on the same core as the AES program to bring
Td0–Td3 into L1D, while the other thread runs on another
tile to keep the whole Td4 inside LLC. The total size of
Td0–Td3 is 4KB, which can indeed be accommodated by
the L1D cache of Intel Xeon Phi 7290, which is 32KB per
core. Any future access to Td0–Td3 entries does not cause
any network traffic in the NoC and hence, Td4 access times
can be measured without any noise. Then, as the attacker,
we do not time the end-to-end latency of all the decryption
rounds. Instead we run a timer thread that will repeatedly
check for any change in out[0] and out[1] (Figure 3).
This is possible because the attacker provides a buffer as
out parameter in the AES_decrypt function to collect the
decrypted text. Therefore, the attacker code can check when
out[0] has been modified. Then, it can start a timer (or
alternatively, start a counting loop). The attacker stops the
timer (or terminates the loop) when out[1] is modified. The
time between these two modifications (to out entries) will be
the time for executing the statements from Line 24 to 28 in
Figure 3. In other words, this is the time for four accesses
to Td4 table. Let us denote this time as T24−28. Due to the
overlapping of memory loads between lines 24 and 28, the
time T24−28 will be shorter if the cache lines accessed in Td4
are all in near tiles or in L1D. On the other hand, if one or
more accesses are to the cache lines in a far tile, the T24−28 will
be higher. By observing a stream of plaintexts and measuring
T24−28 as long as one or more accesses fall on the far tile, we
can guess potential Td4 elements accessed between Line 24 to
28 and retrieve the lower 4 bytes of the key by XOR’ing with
the known plaintexts. In our proof-of-concept (POC) code,
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Fig. 4: Accuracy of determining if one or more accesses fall
to the far tile. We reach 100% accuracy by taking majority
voting of 40 samples or more.
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Fig. 5: Key extraction accuracy with repeated decryption trials.
We can extract lower 4 bytes of any random key with 100%
accuracy by using only ' 4000 trials.

we take multiple samples of T24−28 from decrypting a specific
16-byte plaintext and use majority voting (using AdaBoost
Classifier [11]) to determine if one or more accesses fall to
a far tile. Figure 4 shows that with AdaBoost Classifier, we
can determine accesses to a far tile with 100% accuracy by
using 40 or more samples. If one or more accesses happen
to a far tile, we determine the potential lower 4 bytes of the
key by XOR’ing. We keep doing this using random plaintexts
and eventually, extract the lower 4 bytes of the key using a
simple majority for each byte. Figure 5 shows that our POC
code can extract those bytes with 100% accuracy using only
' 4000 decryption trials1.

V. MITIGATING DISTANCE-BASED NUCA ATTACKS

A. Scope of CAMOUFLAGE

Distance-based NUCA attacks rely on LLC memory ac-
cesses that exhibit latency differences. These differences are
caused by different LLC banks requiring network packets to
traverse different distances in NoC. Therefore, our proposed
defense mechanism, CAMOUFLAGE, does not need to consider
any access that causes an L1D hit because that access will not
come down to LLC at all. Similarly, CAMOUFLAGE does not
need to consider any access that suffers from an LLC miss
because the latency of such access is virtually unaffected by
LLC bank distances in NoC (the latency will be dominated
by the DRAM latency). In other words, CAMOUFLAGE is

1Our POC code is here - https://anonymous.4open.science/r/ml-attack-nuca-
DC02



applied to accesses that cause LLC hits. We refer to any
load instruction that causes an LLC hit as a Security Sensitive
instruction. We also refer to this as Secure LD.

Note that we do not consider any store instruction because
of two reasons. First, from an attacker’s point of view, a store
instruction is harder to time (due to a write buffer) without
the ability to use fence instructions. Second, an attacker
cannot enforce LLC hits if the victim function contains store
instructions. This is because when the attacker brings the cache
lines corresponding to the store instructions to the LLC and the
victim function later executes the store instructions, there will
not be any LLC hit. Instead, each store instruction will upgrade
the associated cache line’s coherence state by generating
invalidation requests followed by the actual write operation.
Both of these issues make it difficult (if not impossible) to
launch a NUCA attack using store instructions.

B. Overview of CAMOUFLAGE

Figure 6 shows the overview of CAMOUFLAGE. When
a core executes a security-sensitive instruction, it sends a
request to the CHA through the Network Interface (NI). CHA
determines the destination tile of the request and sends a
forwarding request. CAMOUFLAGE hardware at the NI of the
destination tile checks the expected round trip latency with
the target latency. CAMOUFLAGE chooses the target latency
based on the worst case round trip latency from the source to
the furthest LLC bank (in case of CAMOUFLAGEJITTER) or the
earliest round trip latency from the source to the farthest LLC
bank using the bypass mechanism (in case of CAMOUFLAGE-
BYPASS). With CAMOUFLAGEJITTER as the defense mechanism,
the destination NI uses a normal routing channel to send
back the response because the expected round trip latency
will be less or equal to the worst-case round trip latency.
The source NI adds the necessary jitter once it receives the
response packet from the destination NI. When the jitter time
has passed, the source NI sends the requested data back to the
core. With CAMOUFLAGEBYPASS as the defense mechanism,
the destination NI checks if the expected round trip latency is
higher than the target latency due to the location of CHA. If so,
the destination NI sends the response packet through a bypass
channel and expedites the packet delivery. When the response
is received, the source NI checks if it arrives earlier than the
target latency. If so, additional delay (i.e., jitter) is added so
that the target latency is met. On the other hand, if the request
from the security-sensitive instruction is satisfied by the local
LLC bank or if the request and response use the normal routing
protocol and still arrive at the source NI earlier than the target
latency, necessary jitter is added to meet the target latency.
Thus, in both schemes, the CAMOUFLAGE hardware ensures
constant latency for packets originating from the security-
sensitive instructions, thereby preventing any distance-based
NUCA attack.

C. Details of CAMOUFLAGE

The goal of CAMOUFLAGE is to ensure constant round
trip latency of any LLC request from the source NI to

Respond using 
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earlier than the target 
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Request 
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Fig. 6: Overview of how CAMOUFLAGE works. CAMOU-
FLAGE hardware ensures fixed latency for LLC memory
accesses using jitter and/or bypass techniques.

any destination NI in the NoC. We explain the details of
CAMOUFLAGEJITTER followed by CAMOUFLAGEBYPASS.

1) CAMOUFLAGEJITTER: CAMOUFLAGEJITTER is the sim-
plest and most intuitive approach to ensure constant LLC
access latency. CAMOUFLAGEJITTER considers the worst case
latency from the source NI to any destination NI as the
target latency (Tworst ) and delay (jitter) every response until
that time. For example, in the case of a 2D mesh topology,
if the source NI is at one corner, the furthest NI would
be the one in the opposite corner. Therefore, the worst-case
scenario happens when the distance between the source and
CHA is the worst and so are the distances between CHA and
destination and destination and source. Since the worst-case
latency could vary depending on the network traffic, the target
latency is set based on the worst-case latency in a highly
congested network. As an example, in the case of a 2D mesh
topology for the NoC, we simulate the topology using the
Booksim2.0 [30] network simulator and determine the round
trip latency between the furthest source and destination NIs. In
the Booksim 2.0 simulator, we simulate the 8x8 mesh network
and measured the network latency with varying injection rates.
We keep increasing the network packet injection rate until the
NoC gets saturated i.e., the network reaches a point where
the round trip latency is abruptly increased. This is shown in
Figure 7. We set Tworst to the round trip latency just before the
saturation point (e.g., at injection rate 0.0875). At that injection
rate, one-way network latency is < 50 cycles on average.
From this network sweep simulation, we set the jitter threshold
Tworst=100 cycles to safely hide any latency differences caused
by a network that is not yet saturated. We did not choose any
point at or above the saturation point because in that case, the
network packets suffer prohibitively large round-trip latency
and the latency becomes non-deterministic. Therefore, when
the NoC gets saturated, it is not possible to launch a distance-
based NUCA attack.

For any request packet originating from a security-sensitive
instruction, the source NI sends the request packet through
the network and receives the corresponding response packet.
After receiving the response, the source NI compares the round



trip latency of the request-response packets (Torig) with the
target latency, Tworst and determines the amount of jitter (i.e.,
Tworst −Torig) that should be added to the response time. The
response packets are buffered in a Jitter Queue in the NI (more
on this in Section VI-B) to add the necessary jitter. Thus,
CAMOUFLAGEJITTER makes the round trip latency of every
LLC hit equal to Tworst and prevents any NUCA attack.
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Fig. 7: Average Network Latency of the worst case scenario in
8×8 mesh topology network simulated using Booksim [30].
The network gets saturated at the injection rate of 0.01 so we
picked the Tworst = 100 Cycles to cover Round Trip Latency for
the worst-case scenario right before the network is saturated.

CAMOUFLAGEJITTER can be easily implemented in the ex-
isting hardware design with minimal changes as shown in
Figure 8. Existing Stall Queues of the NIs can be used as
Jitter Queues (JQ) with some extra logic such as multiplexers
and an arbitrator (ARB) to make them work properly. Note
that jitter is added to only those packets resulting in LLC
hits. Therefore, when the destination bank determines that an
access request is going to cause an LLC miss, the NI sends
back a response packet by marking it as not requiring any
jitter. This is done by setting a flag, called Jitter Required to
False. When the source NI receives the response packet with
the flag set to False, it does not add any jitter. Otherwise,
the source NI calculates the necessary jitter amount and keeps
the response packet in the Jitter Queue until the elapsed time
equals to the jitter amount. Although CAMOUFLAGEJITTER is
simple and intuitive, it incurs significant performance penalties
because the packets suffer the worst-case latency. Moreover,
as multicores become larger [1], [2], the worst-case latency
could be in the range of hundreds of cycles. Therefore, we
propose another defense, called CAMOUFLAGEBYPASS.

2) CAMOUFLAGEBYPASS: To ensure both security and per-
formance, we propose CAMOUFLAGEBYPASS that utilizes both
jitter and bypass techniques. The goal of CAMOUFLAGEBYPASS

is to make the target round trip latency as low as needed
to eliminate any performance degradation. Since the round
trip latency has three parts namely, source to CHA, CHA
to destination, and destination to source, we can expedite all
of them or only a few of them. We choose to expedite the
latency from destination to source because actual data packets
traverse in that part. Besides, expediting only the destination
to source part already eliminates any runtime overhead of our
defense mechanism (Section VII-E). Following this intuition,
we set a round trip target latency Tlow as follows. Tlow is the
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Fig. 8: Network Interface is extended with Jitter Queue (JQ)
and arbitrator (ARB) for CAMOUFLAGEJITTER.

summation of (i) worst case latency from the source to CHA,
(ii) the worst-case latency from the CHA to destination, and
(iii) the lowest latency from the destination to source (even
when destination and source are the furthest apart). For (i)
and (ii), the worst case latency occurs when the tiles are the
furthest apart and for (iii), the fastest traversal happens even
in the case of the furthest destination and source when router
bypass is enabled between them. Packets coming from far
away destination NIs (to the source NI) will mostly use bypass
techniques to stay with the target round trip latency, whereas
those from the nearby NIs will use jitter.

Algorithm 2 shows the detailed steps that the source and
destination NI uses for every packet that caused the security-
sensitive instruction. Based on the expected round trip la-
tency [24], [66], [72] from Src to Dest NI, CAMOUFLAGE-
BYPASS decides to either use bypass channel or regular network.
If the expected latency is above Tlow (Line 11), the bypass
technique is used for the packet. After a response is received
at the Src NI, CAMOUFLAGEBYPASS checks if the response
arrives early (Line 17). If so, the response is jittered inside
the Src NI until the target latency is met. Figure 9 shows a
comparison of different policies.

To implement bypass, CAMOUFLAGEBYPASS does not need
any new physical link. However, one flit size buffer is reserved
for every router at the Input Buffer along the path to make
sure that there is space to hold the bypassed flit. These can
be extended to support multiple flits when there are multiple
simultaneous NUCA timing attacks.

VI. IMPLEMENTATION DETAILS

In this section we will describe the design choices made
to implement CAMOUFLAGE hardware. We first explain the
changes made to a typical NI hardware followed by the details
of how to implement jitter.

A. Changes in the Network Interface

We extend Network Interface (NI) since CAMOUFLAGE
controls the timing of packet ejection from NI. It has been
previously used to provide security features in malware de-
tection [51] or network intrusion detection [46]. We extend
NI capability to detect the potential packets to add jitter to or



Algorithm 2: How CAMOUFLAGEBYPASS works at
the NI to choose jitter or bypass for a packet from
a security sensitive instruction.

Data: Packet P
1 if Is P from sensitive instructions then
2 Src := Source NI of the sensitive instruction;
3 Dest := Destination NI of the sensitive instruction;
4 Tlow := Target round trip latency;
5 ELP := Expected round trip latency of P from Src to Dest;
6 if P is a request packet then
7 Use normal routing protocol for P;

8 else
9 . P is a response packet from Dest /

10 if Current NI = Dest then
11 if ELP > Tlow then
12 Use bypass for P from Dest to Src;

13 else
14 Use normal routing protocol for P;

15 else if Current NI = Src then
16 ALP := Actual round trip latency from Src to Dest;
17 if ALP < Tlow then
18 Jitter P for Tlow−ALP;

19 else
20 Use normal routing protocol for P;

Baseline Jitter Bypass

Fig. 9: Comparison of different strategies

select for bypass based on the expected latency following the
CAMOUFLAGE logic. When the NI receives a load request it
sets the flags to decide on either of the two available networks
(normal or bypass) or adding jitter (for CAMOUFLAGEJITTER).

The bypass network uses the same physical links as the
normal network. We implemented VC separation [16] tech-
nique for the Bypass and Regular network. The NI uses a
1-bit flag called bypass_flag on each output port of the
Router. When the NI sends any flit using the output port, it
checks whether bypass_flag is enabled for that cycle. If
the flag is disabled, then it cannot send the flit using the output
port on that cycle. When CAMOUFLAGEBYPASS wants to send
some flit using the bypass path, the NI first checks and sets
this flag. If the flag is already set, then the NI stalls the flit
for that cycle and tries again on the subsequent cycles until it
succeeds.

Since the best case scenario from the attacker’s perspective
is to use only two distinct cache banks which reside physically
distant from one another, there should not be any contention
between the bypass flits. However, we can easily resolve the
collision by pipelining the bypass. When an NI sends out the
flit to the network using either the bypass path or regular path,

it sets the timestamp of the request of the flit in the header flit.
If this is a flit of a request packet, then we use the flit creation
time. If the flit is of a response packet, we save the timestamp
of the corresponding request flit creation time. This timestamp
is used to process the algorithm in the NI. CAMOUFLAGE
uses a comparator and MUX in NI to implement the defense
technique. The block diagram in Figure 10 gives an example
of bypass operation using the existing buffers.

B. Jitter Implementation

To implement the dynamic jitter we include a Jitter Queue
(JQ) in each NI. This Jitter Queue functions as the buffer for
holding and sending the flits that are associated with the Jitter
cases. Every flit contains a Target Latency (TL) in the flit
header. This is calculated based on the current configuration
of the network. We need to deliver the flits within this Target
Latency. If the Tail flit associated with a secure LD response
arrives at the Source NI of the instruction, we compare the
latency that has been spent inside the network. When the
response for the Secure LD reaches the NI of the Source
Router, we calculate the Round Trip Latency (RTL) of that
request. To do that we use a comparator that compares this
RTL with the TL. We can have two cases here.

1) Case 1: RTL ≥ TL, in this case, we do not have to add
any jitter at all. We can forward this flit to the ejection
queue of the NI if the ejection queue is available. Else
we can add it to the stall queue accordingly.

2) Case 2: RTL < TL, in this case, we add the packet Pi
in the JQ of the destination NI with a jitter amount =
TL− RTL. We set up a counter that wakes up this NI to
consume the flit after this specific amount of clock cycle
waiting.

VII. EVALUATION

In this section we will discuss in detail the experiments and
results to evaluate CAMOUFLAGE.

A. Experimental Setup

We run several experiments to evaluate our proposed de-
fenses. First, we established that it is possible to create a side-
channel using the NoC access latency difference using NUCA
architecture cache in a real machine like Intel Xeon Phi 7290
CPU [3]. Then we showed the impact of CAMOUFLAGEBYPASS

and CAMOUFLAGEJITTER on the average packet network la-
tency with varying packet injection rate using Garnet [37]
simulator. We provided a proof of concept solution using
the CAMOUFLAGEJITTER and CAMOUFLAGEBYPASS methods.
The result of the proof of concept scenario is explained
here in Figure 12. We used PARSEC [7] and Rodinia v3.0
benchmark [13] to evaluate the impact of our proposed defense
mechanisms on a large multi core processor with Gem5
simulator. Finally, we performed some sensitivity studies to
find out the optimal parameters for our design.



Bypass 
Unit

Input 
Buffer

Local/ 
Turn

Flag = False

F

Turn = False

Flag = True

Turn = False

Bypass 
Unit

Input 
Buffer

Local/ 
Turn F

Bypass 
Unit

Input 
Buffer

Local/ 
Turn

Flag = True

F

Turn = False

Bypass 
Unit

Input 
Buffer

Local/ 
Turn

Flag = False

F

Turn = True

Bypass 
Unit

Input 
Buffer

Local/ 
Turn

Flag = False

F

Turn = False

N-0 N-1 N-2 N-3 N-4

Fig. 10: Block diagram of bypass operations.

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Injection Rate

20
40
60
80

100
120
140

Av
er

ag
e 

La
te

nc
y

 (C
yc

le
s)

Baseline
Camouflage_Jitter
Camouflage_Bypass

Fig. 11: Impact of our policy on varying injection rate.

B. Impact on Performance

We have used PARSEC and Rodinia benchmarks to evaluate
the impact of different defense mechanisms on the perfor-
mance of an application. We use any load request arriving
to the LLC as a security-sensitive instruction. We applied
our policies CAMOUFLAGEJITTER and CAMOUFLAGEBYPASS

to see the impact on performance. We have used a 64-
core machine with 32kB L1 cache, 2MB distributed Last
Level Cache scenario. The results are shown in Figure 13.
For Rodinia applications, we executed 1B instructions in the
region of interest where the threads are spawned by the
OpenMP library [12]. For PARSEC applications we execute
1B instruction or end of Region of Interest as marked inside
the PARSEC applications.

We observe that most of the applications suffer from high
performance overhead with the CAMOUFLAGEJITTER approach.
We have 0.1%-57% performance overhead over baseline with
a geomean of 14% overhead across all applications. For most
of the applications, we observe that CAMOUFLAGEBYPASS can
retain the performance benefits from the bypass network. In
this case, we have performance improvement of 2%-36% over
baseline without any bypass2.

However, we have seen in some applications the perfor-
mance benefits were not observed on using CAMOUFLA-

2Note that SMART [38] reported on average 26% performance improve-
ment due to bypass network over the network without any bypass mechanism.

GEBYPASS over Baseline policy. For example, in the case of
x264 we get 4% overhead using CAMOUFLAGEBYPASS policy.
Since the terminating condition of the simulator was set to be
any threads reaching 1B instructions, the number of executed
instructions were not the same for all the applications. So,
in this particular application, we observed more instructions
are executed, hence more simulation time is required even
though the terminating condition for the simulation remained
the same. In other applications, we observed performance
improvement using CAMOUFLAGEBYPASS which showed an
average of 7.5% performance improvement over Baseline and
18% improvement over CAMOUFLAGEJITTER

C. Impact on Average Packet Network Latency
We used the Garnet [37] network simulator to determine the

average packet latency with varying injection rate. The results
of this experiment can be seen in Figure 11.

From this experiment, we can conclude that our policy
performs at least similarly to the baseline configuration. Using
bypass paths to secure LDs does not adversely impact the
overall average packet network latency. However, if we only
add jitter we can see that at a higher injection rate, the
network starts saturating earlier compared to the usage of
CAMOUFLAGE.

D. Impact on Round Trip Latency of Secure LD with Varying
Injection Rate

We can also verify the impact of varying injection rates on
the Round Trip Latency of the Secure LD with the Garnet
network simulator [5]. The following figure 12 shows the
impact on Round Trip Latency of Secure LD instructions using
different policies on varying injection rates.

Here we can see that both the CAMOUFLAGEJITTER and
CAMOUFLAGEBYPASS make sure that there are no discernible
differences between the round trip latencies of Secure LD
instructions going to the closest and the farthest destination
nodes, which is prevalent in the case of Baseline scenario
12(a). In the case of CAMOUFLAGEJITTER solution, we see
that the average Round Trip Latency is much higher as evident
in Figure 12(b) than the average Round Trip Latency of the
CAMOUFLAGEBYPASS which is evident at Figure 12(c).

E. Impact of Varying Number of Destinations in Destination
List

From the attackers’ perspective this is best to have only one
pair of destinations. By varying the number of destinations,
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Fig. 13: Performance overhead of CAMOUFLAGEJITTER & CAMOUFLAGEBYPASS using PARSEC [7] & Rodinia [13] benchmarks

we can compare the impact of the performance using the
Rodinia v3 benchmark. We can see that even if we consider the
worst-case scenario, CAMOUFLAGE performs well compared
to Naive Jitter All scenario as evident in Figure 13. In some
benchmark applications like srad v1 the improvement over
Naive Jitter All scenario is more than 15%. This is due to
the fact that Jitter All scenario adds extra waiting time for the
loads which would have been serviced otherwise. On average,
we can see around 2.5% improvement in the CAMOUFLAGE
compared to Naive Jitter All baseline.

F. Impact of CAMOUFLAGEJITTER and CAMOUFLAGEBYPASS

on Secure Load Latency

Different policies have different impacts on the secure load
latency. The following is the secure load latency distribution
for Facesim application from the PARSEC [7] benchmark. We
can clearly see that both the CAMOUFLAGEBYPASS and CA-
MOUFLAGEJITTER achieve similar results from Figure 14. The
latency distribution Secure Load Latency that hit at Last-Level
cache of closest pair of nodes i.e. same nodes (0,0) and farthest
pair of nodes (0,64) is reflected in the graph.

As we can see in Figure 14, the latency distribution using
CAMOUFLAGEBYPASS overlaps for both the closest and farthest
pair of nodes. Similarly, for CAMOUFLAGEJITTER we can
achieve the same latency distribution for the closest and
farthest pair of nodes, providing a security guarantee in both
cases.
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Fig. 14: Impact of Different Policies on Secure Load Latency

G. Hardware Overhead

We estimate the hardware budget using CACTI-7 [49] at
22nm. Camouflage introduces minimal hardware changes both
in the network interfaces (NI) as well as in the routers. The
changes in the NIs include Jitter queue (0.981 mm2, 0.028
nJ/access) and 512 64-bit comparators. We also include an
arbitration unit with 2 multiplexers whose overhead is not
significant. In the case of the bypass channel [44] in the
baseline, it incurs 2.34% ∼4.69% of overhead compared to
the conventional NoC.

VIII. CONCLUSION

We explored a new distance-based side-channel in NUCA
architecture. We could extract the lower 4 bytes of the AES
key with only 4,000 decryption trials. CAMOUFLAGE, at
runtime, uses a combination of jitter and bypass mechanisms



to eliminate any timing difference of those memory accesses
and thereby, preventing the attack with minimal overhead.
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