
Attack of the Knights: A Non Uniform Cache Side-Channel Attack
Farabi Mahmud

farabi@tamu.edu

Texas A&M University

College Station, Texas, USA

Sungkeun Kim

ksungkeun84@tamu.edu

Texas A&M University

College Station, Texas, USA

Harpreet Singh Chawla

harpreetsc@tamu.edu

Texas A&M University

College Station, Texas, USA

EJ Kim

ejkim@tamu.edu

Texas A&M University

College Station, Texas, USA

Chia-Che Tsai

chiache@tamu.edu

Texas A&M University

College Station, Texas, USA

Abdullah Muzahid

abdullah.muzahid@tamu.edu

Texas A&M University

College Station, Texas, USA

ABSTRACT
For a distributed last-level cache (LLC) in a large multicore chip,

the access time to one LLC bank can significantly differ from that to

another due to the difference in physical distance. In this paper, we

successfully demonstrate a new distance-based side-channel attack

by timing the AES decryption operation and extracting part of an

AES secret key on an Intel Knights Landing CPU. We introduce

several techniques to overcome the challenges of the attack, includ-

ing the use of multiple attack threads to ensure LLC hits, to detect

vulnerable memory locations, and to obtain fine-grained timing of

the victim operations. While operating as a covert channel, this

attack can reach a bandwidth of 205 KBPS with an error rate of only

0.02%. We also observed that the side-channel attack can extract 4

bytes of an AES key with 100% accuracy with only 4000 trial rounds

of encryption.

ACM Reference Format:
Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che

Tsai, and Abdullah Muzahid. 2023. Attack of the Knights: A Non Uniform

Cache Side-Channel Attack. In Annual Computer Security Applications Con-
ference (ACSAC ’23), December 04–08, 2023, Austin, TX, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3627106.3627199

1 INTRODUCTION
The ever-shrinking feature size in CMOS process technology has

enabled the integration of a large number of cores and caches onto

a single chip [11, 31]. Large-scale multicores are equipped with a

large last-level cache (LLC) to alleviate expensive off-chip accesses.

As an example, AMD Ryzen comes with a 256 MB LLC whereas

Intel Xeon Phi 7200 series has a 36 MB LLC [1, 3]. Such an LLC

is distributed over multiple banks connected through a network-

on-chip (NoC) to reduce access latency and improve core isolation,

referred to as a Non-Uniform Cache Access (NUCA) architecture.

With a distributed LLC, memory-level parallelism is improved by

allowing concurrent requests to different banks. However, on the

negative side, access latency to different banks may vary depending

on the distance from the requesting core as seen in Figure 1. In this

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike International 4.0 License.

ACSAC ’23, December 04–08, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0886-2/23/12.

https://doi.org/10.1145/3627106.3627199

paper, we set out to investigate whether this latency difference can

lead to security vulnerabilities in large-scale multicore machines.

When it comes to security vulnerabilities related to caches, side-

channel attacks are the most notorious ones. Numerous cache

side-channel attacks [5, 12, 39, 47, 53, 54, 57, 62, 67] were dis-

covered and shown to be significant threats to data security, es-

pecially during the past few years. The most common form of

cache side-channel attacks involves timing the cache access la-

tency which depends on the state of the target cache lines. Take

Flush+Reload [24, 26, 34, 68, 73, 74, 77] for example. The attacker

tries to observe the target shared lines being accessed by the victim

program, by detecting whether reloading the line incurs a cache hit

or miss. Most existing cache-based side-channel attacks exploit the

timing difference caused by cache states. Numerous defense tech-

niques [22, 30, 33, 40, 43, 46, 58] have been proposed to eliminate

such timing differences. Furthermore, most of the existing cache

side-channel attacks have not been demonstrated or explored in

Non-Uniform Cache Access (NUCA) architecture. Recently, Dai et

al. [17] showed how network contention in NUCA architecture can

be utilized to create timing differences and subsequently, a covert

and side-channel. As we see more and more large-scale proces-

sor chips [2, 3, 7, 18, 38, 51, 66], attackers will turn their attention

to similar attacks which have the potential to circumvent prior

defenses. However, as these multicore chips scale up, contention-

based NUCA attacks will become more difficult due to noises in

the on-chip communication. In this paper, we showed that under

such circumstances, there is still a possibility of a new side-channel

attack in large-scale multicore chips that rely on physical distances

in cache banks as opposed to network contention.

In this paper, we demonstrate a novel distance-based side-channel

attack in large-scale NUCA architecture that may exist even when

other cache-based side-channel attacks have been rendered ineffec-

tive. As a simplified case, let us consider Algorithm 1. It shows the

pseudo-code of a side-channel attack that relies on physical distance

in a NUCA machine. In this example, an address is determined by

the victim according to a specific bit of a secret. The address can be

mapped to the LLC bank of the nearest core when the bit is 0, or

the farthest core when the bit is 1. Therefore, by timing the access

latency, an attacker can infer the secret bit.

To further illustrate this scenario, Figure 1 shows access latency

to the same address from different cores. We collected these la-

tency numbers from the Intel Xeon Phi 7290 CPU. This CPU model

belongs to Intel’s Knights Landings line and has a multicore archi-

tecture with at least 64 cores (the CPU we tested has 72 cores). The

691

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3627106.3627199
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3627106.3627199
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627106.3627199&domain=pdf&date_stamp=2023-12-04

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

0 4 8 121620242832364044485256606468
CPU Core

0

100

200

300

LL
C

Hi
t T

im
e

(C
yc

le
)

Figure 1: LLC hit time measured in cycles when accessing the
same physical address (0x1000000000) from different cores
(core 0 to 71) in the Intel Xeon Phi 7290 CPU. The latency
numbers are averaged over 10,000 samples.

figure shows that the LLC hit latency for the same address has a

range between 280–350 cycles, and this pattern is generally stable

across cores. If an attacker can measure the access latency in the

victim code (as shown in Algorithm 1), he/she will be able to guess

the secret bit by telling whether the addresses fall into a near or far

LLC bank. We refer to this as NUCA distance-based side-channel.

We demonstrate this side-channel in Intel Xeon Phi 7290 using

AES code. We have addressed two major technical challenges for

this attack, namely (i) the overlapping of memory accesses to LLC

banks, and (ii) the difficulty of timing AES operations. To address

these challenges, we have employed different techniques. We have

used AdaBoost [29] model to differentiate between favorable and

unfavorable cases in the presence of overlapping LLC accesses.

With multiple samples and majority voting, we get 100% confidence

in predicting the vulnerable access pattern as described in §6.3.2.

To efficiently time only the region of interest within the decryption

function, we have utilized multiple attack threads and time part of

the AES decryption operation. Our proof-of-concept (PoC) attack

code can accurately extract 4 bytes of any AES key with 4,000 de-

cryption trials using a sequence of random plaintexts. We disclosed

this vulnerability to Intel Product Incident Response Team (PSIRT).

The team subsequently confirmed this vulnerability.

It should be noted that our attack is different from prior attacks.

For example, in the case of Prime+Probe and Dai et al., because the

attacks depend on sharing resources, the attack can be mitigated

by partitioning or clustering the resources. Dai et al. can also be

mitigated through software defenses by exploiting specific sched-

uling patterns in NoC routers. However, NUCA distance-based

side-channel attacks cannot be completely mitigated by partition-

ing or clustering as long as the attacker is able to time the victim.

The success of the attack depends on the capability of the attacker

to time the victim, not the sharing of resources.

For responsible disclosure, we have revealed the attack details

and provided the PoC attack code to Intel and received acknowl-

edgment from them.

In summary, we make the following contributions:

• We demonstrated a new distance-based side-channel attack

on NUCA architecture on an Intel Knights Landing CPU

against a vulnerable AES implementation. The proof-of-the-

concept code can accurately extract the 4 bytes of the AES

Algorithm 1: Pseudo code of a victim function which is

vulnerable to a side-channel based on the difference of LLC

access time due to distance.

Input: BitMask

Data: Secret
1 if (Secret & BitMask) == 1 then
2 𝐴𝑑𝑑𝑟 =𝐴𝑑𝑑𝑟𝑁𝑒𝑎𝑟 mapped to the LLC bank of the nearest core;

3 else
4 𝐴𝑑𝑑𝑟 =𝐴𝑑𝑑𝑟𝐹𝑎𝑟 mapped to the LLC bank of the farthest core;

5 Load(𝐴𝑑𝑑𝑟);

key with only 4,000 decryption trials using a sequence of

random plaintexts.

• We identified and addressed two technical challenges to per-

forming a robust NUCA distance-based side-channel attack.

• We have developed several techniques including the use of

a machine learning model to classify latency that consists

of multiple cache accesses, use of a separate timing thread

for fine-grained timing of the victim operations, and use of a

remote thread to force L1D misses but LLC hits for the target

cachelines.

The rest of the paper is organized as follows: §2 explains The

necessary background of NUCA architecture, different cache side-

channel attacks, AES algorithm; §3 explains the details of the target

architecture; §4 explains the assumptions for the attack model; §5

gives detailed examples of attacks in a microarchitectural simulator

and a real machine and shows other vulnerable algorithms; §6

shows different experiments to prove our claims; Finally, we discuss

some possible defenses in §7.

2 BACKGROUND & RELATEDWORKS
In this section, we describe the background of non-uniform cache

access (NUCA) architecture, cache-based side-channel attacks, and

NoC-based side-channel attacks.

2.1 Non-Uniform Cache Access Architecture
The Non-Uniform Cache Access (NUCA) Architecture is designed

to reduce the memory access time by increasing the cache capac-

ity and thus increasing the cache hit rate [1, 36, 52]. However, as

the bandwidth and the number of ports are limited for individual

physical cache banks, multicore processor chips adopt the design

of having physically separated banks for shared last-level caches

(LLC), which are interconnected with network-on-chip (NoC). As a

result, cache access latency to different cache banks in a NUCA ar-

chitecture shows disparity [41], as the memory operations involve

network protocols and messaging within NoC.

In this paper, we particularly focus on the Mesh-based intercon-

nect topology of the Skylake-SP and Skylake-X processors of Intel,

which have 28 cores [51] as shown in Figure 2, and AMD’s 32-core

EPYC processors [60]. These processors use a different NoC design

as the traditional ring-based architecture of Intel processors, and

thus exhibit completely different access latency patterns from prior

Intel processors.

2.2 Cache Side-channel Attacks
Existing cache side-channel attacks exploit the fact that the internal

states of CPU caches, including TLB occupancy, cache eviction,

692

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

(a) Intel Skylake Die.

Inter-Socket
Link PCIe Inter-Socket

Link

Cache

Core

Cache

Core

Cache

Core

Memory
Controller

Cache

Core

Cache

Core

Cache

Core

Cache

Core
Memory
Controller

Cache

Core

Cache

Core

Cache

Core

D
D
R
4

(b) Intel Skylake Mesh Network.

Figure 2: NUCA Architecture in Intel’s Skylake system. In
the architectural diagram (b), each cache block consists of
private L1, L2 and a shared L3/LLC bank.

cache replacement states, and memory controller buffers can be

observed in the microarchitecture [21, 54, 71, 72]. The attackers

that use these side channels often time the latency of memory

operations after the victims have accessed the TLB or the cache,

and then use the information to infer the behaviors of the victims

or even the secrets inside the victim programs.

For a side channel, the sender (or the “victim”) and the receiver

(or the “attacker”) use the observable states of a system to encode

and decode the information that they intend to communicate. Such

communication typically requires a certain level of synchronization,

especially if the sender and the receiver are communicating more

than one bit. Synchronization is required between the sender send-

ing the information by affecting the states of the system, and the

receiver receiving the information by detecting the state changes

and decoding the information. Between each bit being transmitted

with the side channel, the participants also need to reset/refresh

the state of the system because the receiver cannot distinguish the

state changes caused by transmitting multiple bits from the sender.

Below, we explain some of the existing cache side-channel attack

techniques, and how they transmit information:

• Prime+Probe [5, 12, 39, 47, 53, 54, 57, 62, 67]: This attack
exploits the observable eviction in the shared cache when

CPU needs to replace one of the attacker’s cache lines with

the cache line of the victim. To ensure the observable eviction,

the attacker needs to first prime part of or the entirety of the

cache, so that cache replacement will occur on one of the

attacker’s cache lines.

• Flush+Reload [24, 26, 34, 68, 73, 74, 77]: This attack

depends on the attacker and the victim sharing the same

data in the memory, and thus when the CPU brings the data

into the cache for the victim, the attacker can access the

same cache line afterward. Given that the cache line may be

previously brought in for the attacker, the attacker will use

instructions like CLFLUSH to remove the cache line prior to

the potential operations in the victim. The sharing of data

between the attacker and the victim can be a result of shared

libraries or physical memory deduplication.

• Evict+Reload: Similar to Flush+Reload, Evict+Reload de-

pends on the attacker and the victim sharing the same cache

lines. The only difference is that the attacker first performs

multiple memory accesses to evict the target cache line, in-

stead of flushing the cache line using CLFLUSH. This tech-

nique is useful when CLFLUSH is not available on the specific

architecture.

• Flush+Flush [23]: Flush+Flush also depends on the attacker
and the victim sharing the cache line within the CPU, yet

it exploits the difference of access latency due to the cache

coherence protocol. In Flush+Flush, the attacker times the

CLFLUSH instruction, aside from using it as a measure of

resetting the cache states. If the target cache line was never

accessed by a remote CPU core and thus was never brought

into another private cache, the access latency will be much

lower than that of the scenario in which the cache line is

held in another private cache.

The mitigations of these side-channel attacks are mostly based

on two approaches. The first approach prevents the attackers from

observing the information decoded inside the timing of cache oper-

ations, such as adding extra latency to cache access [19, 75]. The

second approach prevents the attacker and the victim from shar-

ing resources such as the last-level cache and thus eliminates the

medium which they can use for communication [42, 43, 46, 69].

2.3 Other NoC-based Side-Channel Attacks
In NUCA architecture, NoC has been used by attackers to detect

the access latency after the eviction or while fetching cache lines,

similar to Prime+Probe [59]. In order tomitigate such a side channel,

prior work [59] proposes obfuscating the NoC access patterns by

swapping routing algorithms when the attack is suspected.

Another type of explored side channels in NoC is the exploitation

of NoC and cache contention, especially in a Ring interconnect

topology [55]. These side channels exploit the interference of NoC

traffics, and thus can be mitigated by isolating the network traffics

of different processes or CPU cores [70].

2.4 Comparison with Existing Attacks
To show the difference between our NUCA distance-based side-

channel attack and the existing cache side-channel attack (we use

Prime+Probe [57] as an example) and NoC-based attack described

(Dai et al. [17] as an example), we compare these attacks accord-

ing to their attack models, attack assumptions, and the possible

defenses.

Attack Models: The main difference between these attacks is

in the way the sender (the “victim”) transmits information to the

receiver (the “attacker”). The cache side-channel attacks such as

Prime+Probe primarily transmit information by evicting or pop-

ulating specific cache lines. For the NOC attack by Dai et al., the

information is transmitted through the interference of traffic on

the shared NoC rings inside a ring-based Mesh interconnect. On

the other hand, our attack does not transmit information through

changes of cache states or interference, but rather through directly

timing the memory access operations inside the victim to infer

the secret from the difference in cache latency. This difference is

693

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

fundamental to how this attack is performed as well as the possible

defense to the attack.

Attack Assumptions: For the existing cache side channels

(e.g., Prime+Probe), the attacker and the victim needs to share

certain resources and as a result, causing the victim’s behavior to

be observable by the attacker. The NoC attack by Dai et al. requires

the attacker to interfere with the traffic of the victim. Our NUCA

attack does not require any contention or interference, but does

require the attacker to be able to time the victim operations directly.

In addition, we show that, end-to-end latency of victim operations

can be too coarse-grained for the attacker to infer the victim’s

secret accurately, so the attack will require fine-grained timing

information about the latency of individual memory access or at

least groups of memory access. This is one of the important hurdles

that the attacker needs to clear in order to exploit this side channel.

Possible Defenses: The existing cache side channels are typi-
cally mitigated by either un-sharing the resources or obfuscating

the timing in the CPU cache. For the NoC attack by Dai et al., inter-

ference of NoC traffic can be mitigated by changing the scheduling

policies within the NoC or isolating the NoC channels between the

attacker and the victim. For our NUCA attack, the only effective

way is to block the attacker from observing any meaningful pat-

terns in the timing of the victim operations. Along the same line

of thinking, oblivious RAM (ORAM) [65] can be used to remove

the access patterns completely, and thus can be used to mitigate all

three attacks simultaneously.

2.5 Advanced Encryption Standard (AES)
Advanced Encryption Standard (AES) is a block cipher that is widely

used. This was initially proposed in 1997 and later adopted as the

standard by the National Institute of Standards and Testing [16].

Some ISAs started including modified instructions in their instruc-

tion sets to accommodate AES operations [25].

AES can have 128-bit, 192-bit, or 256-bit keys and can comprise

of 10 rounds, 12 rounds, or 14 rounds of encryption/decryption

respectively. Each round can be broken into different steps. These

include -

(1) KeyExpansion - Different keys used in each round are calcu-

lated from the original cipher key using the predetermined

AES Key Schedule

(2) AddRoundKey - During this step, Round Key is XOR’ed with

the current state

(3) SubBytes - A lookup table is used to nonlinearly substitute

each byte with some specific values

(4) ShiftRows - Last three rows of the state are shifted cyclically

(5) MixColumns - Mixing operation that combines four bytes

in each column

In the first round the KeyExpansion and AddRoundKey steps are

performed. In the next consecutive 9, 11, or 13 rounds (based on the

number of bits in the cipher key), SubByte, ShiftRow, MixColumn

and AddRoundKey steps are done. In the final round, only the

SubByte, ShiftRow and AddRoundKey operations are executed. In

our attack, we target the last round of decryption.

3 TARGET ARCHITECTURE DETAILS
In this section, we explain the architectural details of the target

architecture that we have used to implement the attack. We also dis-

cuss how this makes other architectures vulnerable as well. The In-

tel Xeon Phi 7290 is based on the Intel Knights Landing family

that was launched in 2016. Many HPC servers and cloud providers

are still using Knights Landing processors in high performance

computing including Cori [18] from National Energy Research Sci-

entific Computing Center, Stampede-2 [64] from the University

of Texas, Trinity [48] from Oak Ridge National Laboratory or Nu-

rion [38] from Korea Institute of Science & Technology Information.

However, the principle that is exploited in this attack, the latency

difference due to mesh on chip network, is carried into current and

future generations of Intel Skylake-SP [51], Cascade Lake [7] and

even newer processors.

3.1 Memory Configuration
3.1.1 MCDRAM Configuration. To accommodate computationally

intensive programs, Intel Knights Landing series processor started

including high bandwidth on-package memory in the form of Multi

Channel DRAM (MCDRAM). MCDRAM is a high bandwidth mem-

ory that supports multiple channels at the same time. Even though

this memory is physically located within the same package, it is

situated on a separate piece of silicon die. In Intel Xeon Phi 7290 we

have 16Gb of MCDRAM on-package. We have three different mem-

ory modes depending on the usage of the MCDRAM. These three

modes are -

(1) Cache Mode - MCDRAM used only as shared Cache mem-

ory 100% cache, 0% memory

(2) Flat Mode - MCDRAM used as 100% memory and 0% cache.

No separate DDR memory is required.

(3) Hybrid Mode - MCDRAM is used as 25%/50% cache and

the rest is used as memory.

In our experiments, we have used the MCDRAM in flat modes,

however, this can be extended to any memory mode. The flat mode

configuration of the MCDRAM uses L2 Cache as the last level cache.

Since the attack depends on different L2 hit latencies, having more

levels of cache would impact its feasibility. Therefore, we chose

the flat mode configuration to simplify the experiment. However

if we choose other modes, it will require careful calibration of la-

tency thresholds. We leave the exploration of our attack in different

memory modes for future works.

3.2 LLC Organization
The CPU has a floorplan shown as Figure 3, where its 72 physical

cores. (or 288 physical threads with hyperthreading) are distributed

across 38 tiles [32, 63]. It is known that not all tiles have active

physical cores on them, and the physical CPU IDs—the IDs which

are typically obtained through the Advanced Configuration and

Power Interface (ACPI) and are recognized by OS—are arbitrarily

assigned to a tile in an order which tends to alternate between the

four quadrants. For our attack, we do not need to explicitly know

the tiles mapping, however this is obtainable using methods shown

in previous works [32].

694

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

MC-
DRAM

MC-
DRAM

MC-
DRAM

MC-
DRAM

MC-
DRAM

MC-
DRAM

MC-
DRAM

MC-
DRAM

PCIe DMI

3
D

D
R

4
C

ha
nn

el
s

Miscellaneous

DDR DDR

3
D

D
R

4
C

ha
nn

el
s

CHA/LLC

Core Core

Victim CHA (A)
CHA (B)

Line A

Line B
Far-Tile Access

Near-Tile Access

Figure 3: Knights Landing Floorplan Block Diagram [32].
Blue rectangles denote active tiles. Grey rectangles denote
tiles with disabled cores. One tile is zoomed to show that it
contains two cores and a CHA/LLC

3.2.1 MESIF Coherence Protocol. The CPU employs a directory-

based cache coherence mechanism using the MESIF protocol [20]

with a distributed directory system. Each tile includes a Caching/Home

Agent (CHA) in charge of a portion of the directory. Two CPUs

sharing the same tile use the same CHA and LLC. However, each

CPU has its own private L1 cache. Since, Intel Xeon Phi 7290 is

configured in flat memory mode, L2 acts as the private (but shared

among two cores on same tile) last level cache.

3.2.2 Resolving a LLC Request. Each time a core requests a cache

line due to an L1 miss, a corresponding CHA (distributed tag di-

rectory) is queried based on the line address. If the cache line is

present in the LLC bank of a tile, the CHA will instruct the tile

to forward the data to the requester. Thus, two sources of latency

contribute to the difference in LLC hit times - one due to difference

in distance to the CHA location, and the other due to difference in

distance to the forwarding tile. Even if two cache lines reside in the

same forwarding tile, their LLC hit times can differ if two different

CHAs handle the cache lines.

3.2.3 Clustering Mode. There are different clustering modes of

the Intel Xeon Phi 7290 including All-to-All, Quadrant Clustering

and Sub NUMA Clustering (SNC) modes.

(1) All-to-All In this mode, the overall address space is uni-

formly distributed using the hash function across all the

tiles. So, an LLC request originating from any tile can have

the required CHA in any of the other tiles. There are also no

restrictions on which memory controller can access which

set of tiles.

(2) Quadrant/Hemisphere In this mode, the memory request

may originate from any tile. However, the tag directorymust
be located in the same quadrant/hemisphere of the memory

controller. There exists a single address space shared across

all the memory channels.

(3) Sub NUMA Cluster (SNC-2/SNC-4) This mode converts

the processor to a 4 nodeNUMA(SNC-4) or 2 nodeNUMA(SNC-

2) configuration. Each cluster has its address space inter-

leaved within the quadrant (in SNC-4) or the hemisphere (in

SNC-2). Memory request originating from the same cluster

is served by the tag directory, memory controller within the

same quadrant/ hemisphere. NUMA aware software can use

this mode where each thread is pinned to a specific hemi-

sphere(2)/quadrant(4).

We configure to an All-to-All cluster mode where a request can

traverse the entire mesh to contact the tag directory, then forward

it to the proper memory controller to fetch the required cache

line. Both Quadrant/Hemisphere and SNC-2/SNC-4 exhibit lower

differences in LLCHit latencies between the nearest and the farthest

nodes than the All-to-All mode. Quadrant/Hemisphere mode has

lower difference because Tag Directory (TD) should be co-located

in the same quadrant/hemisphere of the requestor, limiting the

distance needed to travel by the request. On the other hand, SNC-

2/SNC-4 mode shows even lower difference because the address

space is limited within the cluster. That is why, we choose All-
to-All mode. Both the cluster mode, and MCDRAM configuration

can be obtained by using numactl application without any root
privileges.

4 ASSUMPTIONS & THREAT MODEL
In this paper, we assume that the attacker’s target is a NUCA ar-

chitecture with a multi-hop mesh interconnection network. The

attacker can identify vulnerable access patterns either through

profiling, if they do not have access to the source code, or by recog-

nizing it within the source code itself. Unlike other side-channel

attacks based on contention within the NUCA architecture, the

distance-based attack requires measuring the execution time of the

victim functions that are known to access data in different cache

banks in NUCA.

Attacker needs to know hardware configurations such as CPU

Model Number, Cache Hierarchy and, MCDRAM configuration, and

Clustering Mode. Note that all of these can be obtained from /sys,
/proc and numactl without root privileges. The attacker can time

the sensitive operations in the victim program by interacting with

the victim, such as exchanging messages through the network or

inter-process communication (IPC), detecting changes in shared

variables, or exploiting other side-channels. In case of attacks using

a shared variable, the attacker needs read permission on the shared

variable through some libraries (like shared AES library) similar to

previous attacks [13, 23, 71, 72, 74].

Restrictive defense mechanisms like not allowing hyperthread-

ing of processes of different security domains can be assumed [49,

76]. However, attacker needs to be able to launch threads to dif-

ferent physical cores other than the victim’s core. For the covert

channel, we assume that the attacker (spy) and the victim process

are strictly cooperating, so there is no need for a separate timer

thread, rather the attacker is allowed to read timestamps directly by

the victim process. For the side-channel, we assume that attacker

695

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

do not have the permission to insert RDTSC or any other timing

mechanism to directly monitor the victim process.

The attackers may or may not have access to an accurate timing

function like RDTSC, but they can use alternatives such as counting

threads. It is also assumed that the attacker does not possess root

privileges. The hardware and the OS are assumed to be correct and

trusted by the victim program.

5 IMPLEMENTATION
In this section, we describe the setup and steps for exploiting a

NUCA distance-based side-channel. First, we show the attack on

a simulated machine using the Gem5 simulator [9]. We did this to

demonstrate the attack in a strictly controlled environment where

it is easier to show the main components of an attack. Then, we

demonstrate the attack example using the AES decryption function

in a real machine. The attack is demonstrated on an Intel Xeon Phi

7290 CPU.

5.1 A NUCA Distance-based Side-channel in a
Simulated Machine

To demonstrate the attack, we first explain it using a simulated

machine in Gem5 [9]. To perform the attack, we need to identify

two addresses that have a significant difference in LLC hit times.

To accomplish this objective, we configure an 8x8 tiled architecture
with 64 tiles. Each tile contains a core, a private L1I and L1D cache,

and a shared LLC (L2) bank. The size of a cache line is 64B. Each

L1D is a 2-way associative 4kB cache. Each LLC bank is an 8-way

associative 2MB cache. 64 tiles are connected using an 8 × 8 mesh

network. With this configuration, both the L1D cache and LLC

use the bit[10:6] of the physical address for indexing. LLC bank is

selected using bit[12:6] of the physical address.

An example attack code is shown in Figure 5. Before performing

the attack, we allocate a large array (line 1 in Figure 5) and start

accessing all cache lines belonging to the array (line 12-13). At the

end of those accesses, we can infer that the initial entries of L1D

cache will be evicted but they will still reside in LLC. This step is

similar to priming the cache as used in prior cache side-channel

attacks [54]. Next, we need a victim function that accesses two

addresses (depending on the secret) such that the addresses reside

in two different LLC banks.

For determining which addresses would be useful for the vic-

tim function, we analyze the LLC hit latency for all the entries of

the array indexed from 0 to 511*64. We found that the entry at

the index 117*64 and 118*64 are mapped to the virtual address

0x4c7fc0 and 0x4c8000, accordingly. These virtual addresses are
mapped to the physical addresses 0xc6fc0 and 0xc7000, respec-
tively. Using the LLC bank selection bits, we can verify that entry at

index 117*64 (virtual address 0x4c7fc0, physical address 0xc6fc0)
is mapped to bank 63. On the other hand, the entry at index 118*64

is mapped to bank 0. With this mapping, we make sure that the

victim function accesses either index 117*64 or 118*64 depending

on the secret (Lines 5-6). As a result, when an attacker times the

victim function (Lines 16-18), he/she can infer the secret one bit at

a time by comparing the access latency with the access latency of

bank 63 (or 0).

In this run, we have the attacking code running one of the 64

cores and the rest of the cores are running instances of Rodinia

v3 [14] benchmark applications. This was done to make sure the

attack is noise resilient. From Figure 4, we can clearly see that in

the case of the green area (i.e. secret bit 0), the round trip latency

of the load is mostly very high (95+ cycles). On the other hand

when the secret bit is 1, we have round trip latency that is very low

(around 40 cycles). In this way, by observing this round trip latency,

the attacker can infer the secret successfully with high accuracy

(>95%).

5.2 Attack on Intel Xeon Phi 7290
In this subsection, we describe the proof-of-concept (POC) imple-

mentation of our attack on the Intel Xeon Phi 7290 machine. To

realize this attack, we need to identify Far– and Near– tile accesses

and separate them. Moreover, we need to ensure LLC hits while

having L1D misses.

5.2.1 Identifying Far- and Near-Tile Accesses. To perform the attack,

the attacker needs to identify addresses that are mapped to the

CHA on a far tile or a near tile. To do that we use a strategy, called

Execute and Profile. This strategy has two steps. First, it requires

an attacker process to execute on the same tile (not necessarily the

same physical core or thread) with the victim program. The attacker

process then allocates a certain amount of virtual memory and

accesses it. The attacker process uses a helper thread that accesses

the addresses first to bring them to the LLC. The CPU tile of this

LLC acts as the forwarding tile. When another thread of the attacker

process accesses those addresses, LLC hits occur. Depending on the

distance of the CHA associated with an address, different addresses

have different LLC hit times. The attacker process profiles the hit

times of different virtual addresses. Based on the LLC hit times,

the attacker can identify two sets of virtual addresses - one that

is mapped to the far tile’s CHA and one that is mapped to the

near tile’s CHA. Let us denote these two sets as VA
far

and VAnear

respectively.

5.2.2 Ensuring L1D Miss and LLC Hit. The attack also requires the

accessed data to be a miss in L1D but a remote hit in LLC. If the

access is an L1D hit or an LLC Miss, the latency will not depend

on the distance in the NoC. Also, if the access is a hit in the local

LLC, no communication with the CHA will happen. We guarantee

the above scenario using two strategies: First, to ensure a remote

LLC hit, the attacker can run on a separate core before the victim to

load the target cachelines into a remote LLC. Once the cachelines

are loaded, other cores will continue to forward from the same LLC

slice upon L1D misses. Second, the attacker can either prime the

L1D cache of the victim by running a thread on the victim core, or

invalidating the L1D cache of the victim core using instructions

like PREFETCHW. The latter is easier since the attacker is already
running a thread on another core to keep the presence in LLC.

5.2.3 Attack Target. Our attack requires two elements in the attack

target: (1) An operation that accesses various cache locations de-

pending on the secret. Here, we use an SSH engine which uses the

vulnerable T-table implementation to decrypt incoming ciphertexts.

(2) A fine-grained timing channel that allows the attacker’s timing

thread to measure part of the vulnerable function instead of the

696

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Timeline

0

20

40

60

80

100
Ro

un
d

Tr
ip

 L
at

en
cy

(C
yc

le
s)

Figure 4: Round trip latency obtained from POC attack on a simulated machine. Green Region represents cases when the secret
bit is 0, white region represents cases when the secret bit is 1. Blue Cross (x) represent data predicted to be bit 0 and red cross (x)
represent data predicted to be bit 1. We have >=95% accuracy with other cores running Rodinia benchmark [14] applications

.

1 u i n t 8 _ t a r r [512 ∗ 6 4] , s e c r e t = 1 2 3 ;

2

3 vo id v i c t im (uns igned i n t mask) {

4 u i n t 8 _ t s = s e c r e t & mask ;

5 i f (s == 0) s ^= a r r [117 ∗ 6 4] ; / / LLC bank 63

6 e l s e s ^= a r r [118 ∗ 6 4] ; / / LLC bank 0

7 }

8 i n t main () {

9 uns igned long t1 , t2 , junk , mast = 1 ;

10 f o r (i n t i = 0 ; i < 8 ; i ++ , mask <<= 1) {

11 / / Br ing a r r [1 1 7] and a r r [1 1 8] to LLC

12 f o r (i n t j = 0 ; j < 5 1 2 ; j ++)

13 junk ^= a r r [j ∗ 6 4] ;

14 _mm_mfence () ;

15 / / Time the v i c t im f un c t i o n

16 t 1 = __ r d t s c p (& junk) ;

17 v i c t im (mask) ;

18 t 2 = __ r d t s c p (& junk) − t 1 ;

19 / / I f the b i t i s 0 , the l a t e n c y > 100

20 p r i n t f (" BIT [%d] : %d \ n " , i , t 2 > 100? 0 : 1) ;

21 }

22 }

Figure 5: An example attack code to leak a secret. The secret
data is accessed inside the victim function.

whole function. Here, we assume that the attacker has access to

a shared out variable with the AES engine, while the rest of the

AES engine is isolated from the attacker (so the attacker has no

access to the secret key directly). This scenario is possible if the

attacker and the AES engine reside in two separate processes but

use System V shared memory to share the in and out buffers for
decryption, or if the attacker is isolated from the AES engine in the

same process using Intel MPK [15] or ARM Memory Domains [45]

except for the in and out buffers.

5.2.4 An Attack Example with AES. The traditional AES implemen-

tation uses a number of transformation tables, known as T tables,

to represent the computation and permutation of individual bytes

during multiple rounds (9 rounds for AES-128, 11 rounds for AES-

192, or 13 rounds for AES-256). These T tables have been the targets

of exploitation on multiple side-channel attacks to leak the AES

secret keys [8, 10, 27, 35]. We show a simplified version of the AES

decryption code in Figure 7. Since AES is a block cipher, in each

invocation, the AES_decrypt function will take a block of 128 bits

as the input and decrypt it using the round key. AES_decrypt and

AES_encrypt have very similar structures, except that they use

two different sets of T tables, Td0–Td4 and Te0–Te4, respectively,
and that AES_decrypt has an extra round that uses only Td4 at the
end of decryption. Generally, the last round of AES_decrypt has

been targeted by cache side-channel attacks because, in the last

round, four elements of Td4 and one element (four bytes) of the

private key are XORed to produce the four bytes of the plaintext.

For example, Line 26 - 31 does the following:

s0 = Td4[A] ∧ Td4[B] ∧ Td4[C] ∧ Td4[D] ∧ rk[1]

PUTU32(out,s0)

where A, B, C, and D are indices of Td4. If the attacker knows

the plaintext and Td4 values used, then the four bytes of the private

key (i.e., rk[1]) can be derived by XORing them. The key challenge

is to determine which Td4 values are used here.

The NUCA distance-based side-channel attack on AES is differ-

ent from the FLUSH+RELOAD and similar attacks since it cannot

infer exactly which cache line is accessed and brought into the

cache by examining the cache contents. Instead, the attacker can

only time the victim function, AES_decrypt, and use the latency

to extract the bits inside the key. Specifically, this attack faces

two major challenges: (1) Overlapping of multiple cache loads:
An out-of-order CPU can issue multiple load instructions into the

pipeline, and send multiple requests to the Load Store Queue (LSQ).

Although the Total Store Ordering (TSO) model of most Intel CPUs

forbids reordering of the load requests, requests can still be sent

while the prior requests await responses. As a result, the latency of

multiple load instructions without mutual dependency can overlap,

and thus, the highest latency of individual loads will dominate the

overall latency. (2) Timing difficulty with multiple decryption
rounds: From the attacker’s point of view, it is difficult to time the

last round of decryption where only elements of Td4 and the lower

4 bytes of the key are accessed. This is because timing the entire

AES_decrypt function will include the time of earlier rounds of

decryption making it impossible to determine how much time it

takes only to access Td4 entries.
To overcome the challenges, we formulate the attack as follows:

The Attacker runs two threads – thread 1 runs a loop on the same

697

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

Get key (Kv) with
majority voting

AdaBoost Model Training

Attacker

Victim (SSH Client)

AES
Engine

Attacker

Victim
(SSH Client)

Timing
Thread

Plaintext/
Ciphertext

Latency

Plaintext

f

x1

x2

h1

h2

h3

f: Latency → {HIGH, LOW}

HIGH/LOW?

Ciphertext
(Ca) and
Key (Ka)

Ciphertext
(Cv) and
Key (Kv)

AES
Decrypt

XOR plaintext
with Td4
values

Plaintext

Latency

LOW

Timing
Thread

Plaintext/
Ciphertext

Attack Setup

1

2

2
3

4
4

5

5

6

7

Attack Steps

Figure 6: A step-by-step illustration of how an attacker can launch a NUCA distance-based side-channel attack on an AES code.
The left side shows the setup assumed in the attack scenario.

1 static const u32 Td0 [256] = ...;

2 static const u32 Td1 [256] = ...;

3 static const u32 Td2 [256] = ...;

4 static const u32 Td3 [256] = ...;

5 static const u8 Td4 [256] = {

6 0x52U , 0x09U , 0x6aU , 0xd5U , 0x30U , 0x36U , 0xa5U , 0x38U ,

7 0xbfU , 0x40U , 0xa3U , 0x9eU , 0x81U , 0xf3U , 0xd7U , 0xfbU ,

8 ...

9 };

10

11 void AES_decrypt(u32 *in, u32 *out , u32 *rd_key) {

12 u32 s0, s1, s2, s3, t0, t1, t2, t3;

13 s0 = in[0] ^ rk[0];

14 s1 = in[1] ^ rk[1];

15 s2 = in[2] ^ rk[2];

16 s3 = in[3] ^ rk[3];

17 ...

18 /* The last round */

19 s0 =

20 ((u32)Td4[(t0 >> 24)] << 24) ^

21 ((u32)Td4[(t3 >> 16) & 0xff] << 16) ^

22 ((u32)Td4[(t2 >> 8) & 0xff] << 8) ^

23 ((u32)Td4[(t1) & 0xff]) ^

24 rk[0];

25 PUTU32(out , s0);

26 s1 =

27 ((u32)Td4[(t1 >> 24)] << 24) ^

28 ((u32)Td4[(t0 >> 16) & 0xff] << 16) ^

29 ((u32)Td4[(t3 >> 8) & 0xff] << 8) ^

30 ((u32)Td4[(t2) & 0xff]) ^

31 rk[1];

32 PUTU32(out + 4, s1);

33 ...

34 }

Figure 7: The vulnerable, fully unrolled (i.e., non-iterative)
code for AES decryption in aes_core.c of OpenSSL 1.1.0f.
The source code is simplified for brevity, and only shows the
initial values of Td4 and the last round of AES_decrypt.

core as the AES program to bring Td0–Td3 into L1D, while thread

2 runs on another tile to keep the whole Td4 inside LLC. Bringing

the whole Td0–Td3 tables into the L1D is possible because the total

size of Td0–Td3 is 4KB and Intel Xeon Phi 7290 has 32KB per core

of L1D cache. Any future access to Td0–Td3 entries does not cause

any network traffic in the NoC and hence, Td4 access times can

be measured without any noise. We should note that Td4 table

contains 4 cache lines. Although all of them will be loaded in the

LLC of thread 2’s tile, the CHAs of those cache lines will likely

be spread apart - some of the CHA tiles will be near the victim’s

CHA

L2

Victim

CHA

L2

Attacker

CHA

L2

CHA

L2Td4 CHAs
 (Near)

All Td4 cachelines

Near-Tile Far-Tile

Td4 CHAs
 (Far)

Figure 8: How the distance differences between access near-
tile and far-tile CHAs are exploited by the AES attack. The
attacker preloads all 4 Td4 cachelines in one core, so the LLC
hit latency is determined by the distance to the CHAs.
tile while others might be far apart as illustrated in Figure 8. Thus,

when the victim accesses Td4 table from the LLC of the attacker,

some cache lines will incur lower latency while others will incur

higher latency.

Timer thread will repeatedly check for any change in out and
out+4 (Figure 7). We cannot rely on the timing of the whole func-

tion because there might be different LLC accesses within the

AES_decrypt call which will add to the noise. As AES is a block

cipher that uses different rounds of computation on the same table,

timing the whole function complicates the secret extraction. How-

ever, by isolating the timing thread to only monitor the necessary

region of interest within the function, we increase the accuracy

of this attack as reflected in the results in §6. This technique can

later be used to improve other cache side-channel attacks too. This

is done through the out buffer provided as a parameter to the

AES_decrypt function to collect the decrypted text. This out buffer
is observable to the attacker. This helps the attacker to keep track

of when out has been modified. The attacker can then start a timer

(or start a counting loop).

The attacker stops the timer (or terminates the loop) when out+4
is modified. The time between observing these two modifications to

out entries will be directly proportional to the time for executing

the statements from Line 26 to 31 in Figure 7. In other words, this

is the time for four accesses to the Td4 table (say, 𝑇26−31). This

698

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

method of measuring the Td4 accesses derives from the SharedAr-

rayBuffer method proposed in [62]. We can use PREFETCHW timer

to monitor memory addresses without any write-access as shown

in [28]. Results regarding using PREFETCHW timer implementa-

tion is given in §6.3.1. Due to the overlapping of memory loads

between lines 26 and 31, the time 𝑇26−31 will be lower if the CHAs
used in Td4 accesses are all in near tiles or in L1D (let us call this

scenario LOW) and higher if one or more accesses are to the CHAs

in a far tile (let us call it HIGH). The attacker can use some simple

threshold to determine whether 𝑇26−31 can be classified as LOW or

HIGH.
Figure 6 shows the flow of our end-to-end attack. In Step 1, an

attacker randomly generates 𝑁 ciphertext and key pairs (𝐶𝑎 and

𝐾𝑎) in the Attacker thread (𝑁 = 10𝑀 in our experiments). The

attacker then uses AES Decryption to get plaintext for each round

in Step 2. Timer thread measures the latency 𝑇26−31 during each

decryption. The attacker classifies the latency with labels LOW or

HIGH. The latency numbers and their labels are used to train an

AdaBoost model. The model in essence is a more robust version

of the threshold-based classification method that the attacker has

already used.

The victim SSH Client is now allowed to use the AES engine to

decrypt ciphertext 𝐶𝑣 with its own secret key 𝐾𝑣 (Step 4). Timer

thread monitors these decryptions and measures the latency in

Step 5. In Step 6 this latency is predicted to be either LOW or HIGH
using the model trained in Step 3. If the latency is classified as

LOW, then the attacker can XOR the plaintext with Td4 values

associated with the LOW label to determine a set of possible values

for 𝐾𝑣 (more specifically, bytes 8-11 of 𝐾𝑣). The attacker repeats

Step 4 - 7 multiple times and extracts possible values of 𝐾𝑣 each

time. The attacker uses a majority voting among the possible 𝐾𝑣
values after 𝑇 trials. Figure 15 shows the accuracy for extracting

keys after different number of trails. Our experiments indicate that

after 𝑇 = 4000 trials, the attacker can extract 4 bytes of 𝐾𝑣 with

100% accuracy.
1

We have tested our code to work with OpenSSL 1.1.0f imple-

mentation of AES algorithm. AES introduced constant time code

path without using T-table implementations to defend from pre-

viously known timing side-channel attacks [6]. However, because

of extremely high performance overhead, the default behavior has

been set to use T-table based implementation in recent (>3.0.0) ver-

sions [56]. So, even recent versions of software based AES with

no-asm no-hw is vulnerable to this type of attack.

5.3 Generalizability of Attack
We explain the generalizability of the attack in terms of both hard-

ware and software targets.

5.3.1 Vulnerable Hardware Platforms. Our attack requires a mesh-

based NoC for the LLC where the LLC hit latencies are significantly

different. We ran all of our experiments in Intel Xeon Phi 7290. To

show generalizability, we also experimented on another platform,

Intel 10700k CPU from Intel Comet Lake processor family which

uses mesh interconnect [17]. This processor has 8 core count with

2 threads on each core. Figure 9 shows the results. It shows that the

1
Our POC code is here - https://anonymous.4open.science/r/NUCA-side-channel-

6C9D

LLC hit latency to same address is uniquely different from different

cores. This implies that similar vulnerabilities may exist in other

mesh NoC-based platforms. However, we did not run end-to-end

attacks on any other machine.

2 4 6 8 10 12 14
CPU ID

0
20
40
60
80

100
120

LL
C

Hi
t T

im
e

(C
yc

le
)

Figure 9: LLCHit Latency for the same address from different
CPU cores in Intel 10700k. Black error bars indicate 95% con-
fidence interval over 10,000 trials after filtering out possible
LLC misses. Requster is at CPU ID 0.

5.3.2 Vulnerable Software Targets. Our attack depends on two

things: a) A data structure (buffer) that spans across multiple cache-

lines, and b) Secret dependent accesses to those cachelines. Due to

CPU interleaving, different entries of these large data structures

are allocated to different LLC slices and that’s why we have se-

cret dependent different latencies which can be used as a source

to leak those secrets. Based on these two properties, we have ex-

plored the OpenSSL implementation of some popular cryptography

algorithms from [4] and found many algorithms have these two

properties and hence would be vulnerable to similar attack scenar-

ios. Camellia [50] and ARIA [44] have a similar S-box structure

that expands to multiple cachelines as shown in Figure 10, Another

variable key length cryptographic algorithm Blowfish [61] has a

similar data structure which spans multiple adjacent cachelines.

These algorithms can potentially be vulnerable to the same attack.

6 EXPERIMENT
In this section we first describe the experiment results from Gem5

simulation. Then we will show the experiment results for covert-

channel using the timing difference between farthest and nearest

CHAs. Finally we will explain the results we have obtained using In-

tel Xeon Phi 7290 to implement the attack on a real machine.

6.1 Results from Gem5 simulation
6.1.1 Simulated Attack Latency Distribution. In Figure 11 we can

that the latency distribution for LLC hits from the farthest and the

nearest nodes. Timing distribution is clearly separable for LLC hit

at the Near and the Far node. This clearly shows that the possibility

of this side-channel to extract secrets.

With a specific set of machine where we can replicate similar

behavior, we can easily extract the secrets by making sure that

either the nearest or the farthest node is hit at LLC during the cache

access.

6.2 Covert-channel Experiments
In this section, we show the results that we have obtained by setting

the attacker and victim thread in the same process. In a covert

699

https://anonymous.4open.science/r/NUCA-side-channel-6C9D
https://anonymous.4open.science/r/NUCA-side-channel-6C9D

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

1 static const uint32_t S1[256] = {

2 0x00636363 , 0x007c7c7c , 0x00777777 , 0x007b7b7b ,

3 ...

4 };

5

6 static void sl1(ARIA_u128 *o, const ARIA_u128 *x, const ARIA_u128

*y)

7 {

8 unsigned int i;

9 for (i = 0; i < ARIA_BLOCK_SIZE; i += 4) {

10 o->c[i] = sb1[x->c[i] ^ y->c[i]];

11 o->c[i + 1] = sb2[x->c[i + 1] ^ y->c[i + 1]];

12 o->c[i + 2] = sb3[x->c[i + 2] ^ y->c[i + 2]];

13 o->c[i + 3] = sb4[x->c[i + 3] ^ y->c[i + 3]];

14 }

15 }

Figure 10: The code implementation of ARIA in openssl 1.1.0f
shows similar data structure S1 that spansmultiple cacheline
as well as function sl1 that accesses one of those entries
depending on the secret

20 30 40 50 60 70 80 90 100
Round Trip Latency (Cycles)

0

20

40

60

80

100

Fr
eq

ue
nc

y
(%

)

Nearest Node
Farthest Node

Figure 11: Simulated Attack Latency Distribution in Gem5.
In this case we can clearly observe the latency difference due
to the physical distance of nodes requesting the data from
the source of the data
channel setup, the attacker and victim are trying to communicate

covertly. This gives us the opportunity to have synchronization

between attacker and victim process.

6.2.1 Bandwidth & Error Rate. Running a similar proof of concept

code with all the optimizations and steps mentioned in Section 5 we

get an accuracy of 99.98% on extracting secrets after 100,000 trials.

In these trials, the channel could reach a bandwidth of 205KBPS

while maintaining an Error Rate of less than 0.02%.

Figure 12 shows the Bandwidth and Error Rate of the covert

channel implementation with varying size of payload. The shaded

area shows 95% confidence interval.

6.3 Side-channel Results
6.3.1 PREFETCHW Timer. In this section, we discuss the possibil-

ity of using PREFETCHW for observing any change in the data

following the examples of Adversarial Prefetch [28]. We used a

spy thread to continuously execute PREFETCHW on a read-only

memory address. When the victim thread who has write-access

to that data, writes new data on that address, PREFETCHW takes

much longer time >150 cycles to complete compared to <100 cycle

time as observed in this experiment. The result latency distribution

is shown in Figure 13 We can use this prefetch timer to identify

whether out shared variable was modified by the victim or not

2 8 32 128 512 20488192
32768

Payload Size (B)

150

160

170

180

190

200

Ba
nd

wi
dt

h
(K

Bp
s)

0.00

0.01

0.02

0.03

0.04

0.05

Er
ro

r R
at

e(
%

)

Bandwidth
Error Rate

Figure 12: Bandwidth & Error Rate of covert channel with
varying payload size

0 50 100 150 200 250 300 350
Latency

0

10

20

30

40

50

Fr
eq

ue
nc

y(
%

)

PREFETCHW Hit
PREFETCHW Miss

Figure 13: Hit or Miss latency distribution using
PREFETCHW instructions. PREFETCHW takes much
longer time to complete if a remote LLC modifies the data
due to invalidations. To monitor a shared variable, we can
utilize this difference.

assuming that the attacker do not have write-access to the out
variable.

6.3.2 Accuracy of ML Classifier. In our proof-of-concept (POC)

code, we take multiple samples of𝑇24−28 from decrypting a specific

16-byte plaintext and use majority voting (using AdaBoost Clas-

sifier [29]) to determine if one or more accesses fall to a far tile.

Figure 14 shows that with AdaBoost Classifier, we can determine

accesses to a far tile with 100% accuracy by using 40 or more sam-

ples. If one or more accesses happen to a far tile, we determine the

potential lower 4 bytes of the key by XOR’ing. We keep doing this

using random plaintexts and eventually, extract the lower 4 bytes

of the key using a simple majority for each byte.

6.3.3 Key Extraction Accuracy. Figure 15 shows the accuracy for

extracting keys with varying number of trails. Our experiments

indicate that after 𝑇 = 4000 trials, the attacker can extract 4 bytes

of 𝐾𝑣 with 100% accuracy.

7 POSSIBLE DEFENSE
In this section, we discuss about the possible defense mechanism

against NUCA distance-based side-channel attacks. First, we need
to identify the root cause of the attack and then we can add compo-

nents/techniques to disable it. However, in the case of this attack,

700

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

0 20 40 60 80 100
Number of Samples

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Figure 14: Accuracy of determining if one or more accesses
fall to the far tile. We reach 100% accuracy by takingmajority
voting of 40 samples or more.

23 26 29 21
2

21
5

21
8

Number of Trials

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Figure 15: Key extraction accuracy with repeated decryption
trials. We can extract 4 bytes of any random key with 100%
accuracy by using only ≃ 4000 trials.
the source of the side-channel is because we have differences in

the physical location of different CHAs representing different parts

of the address space. In case of on-chip mesh networks, we have

to take this physical distance into account while traveling hop by

hop from the source node to the destination. With larger on chip

networks like Intel Xeon Phi 7290 the number of hops to reach the

farthest node only increases compared to the nearest nodes.

To have an architectural defense from this type of side-channel

attack, we need to make sure that all the nodes are reachable within

the same amount of time. This can be done in many network config-

urations like a Ring-based network where with some modification

we can guarantee all the nodes can be reached within the same

amount of time. Or, we can artificially add delays to the shorter path

communication so that the attacker cannot infer the difference from

timing the near and far node communications. In this way, all the

nodes, regardless of their distance from the source, will send their

response in the worst-case scenario. This will also harshly impact

the performance. Our experiment results using the Booksim [37]

simulator shows that in the 8× 8 configuration, we have the packet

network latency getting saturated at >100 cycles at an injection

rate of 0.1. The experiment results can be seen here in Figure 16.

As we can observe from the Figure 16 at a higher injection rate,

the network gets saturated. So at this latency (>100 cycles), the

latency observed by the attacker would not be correlated with the

distance from the attacker node but rather be compounded by the

saturated network. Following this, we can design a defense mech-

anism that can work against NUCA distance-based side-channel

attacks.

0.0
02

5
0.0

50
0
0.0

75
0
0.0

77
1
0.0

79
2
0.0

81
3
0.0

87
5
0.1

00
0

Injection Rate

0

25

50

75

100

La
te

nc
y

(C
yc

le
s)

Figure 16: 8x8 on chip network simulated in BookSim [37]
with uniform random traffic. The graph shows packet net-
work latency with varying injection rate until the network
gets saturated.

8 CONCLUSION
We have shown a novel NUCA distance-based side-channel attack

in a simulated as well as a real machine. We demonstrated how to

use this attack to break AES cryptographic algorithm in a Intel Xeon

Phi 7290 machine. We used a combination of microarchitectural

techniques with machine learning to overcome major challenges

like identifying overlapping access while measuring access laten-

cies of only region of interest of a victim function. With Gem5

simulator [9] we have shown the principle of this attack on the

presence of other background application. We have also shown

how a covert channel can be created using the same principles of

non uniform distance between LLC banks. Our covert channel can

transmit information at a rate of 205KB/s with a very low error rate

of 0.02%. Finally, using the restricted environment in a side-channel

setting, we could extract 4 bytes of the AES key with only 4,000 de-

cryption trials. We leave the future works for extracting rest of the

secret key by extending this or by using some other side-channel

attacks.

ACKNOWLEDGMENTS
This work is funded by NSF award number 2301334. The authors

would like to thank the Shepherd and the anonymous reviewers

for their helpful comments and suggestions.

REFERENCES
[1] [n. d.]. AMD Ryzen. https://www.amd.com/en/products/cpu/amd-epyc-7742.

https://www.amd.com/en/processors/ryzen

[2] [n. d.]. Ampere Altra Review. https://www.anandtech.com/show/16315/the-

ampere-altra-review/3. https://www.anandtech.com/show/16315/the-ampere-

altra-review/3

[3] [n. d.]. Intel Xeon PHi. https://ark.intel.com/content/www/us/en/ark/products/

series/75557/intel-xeon-phi-processors.html. https://ark.intel.com/content/

www/us/en/ark/products/series/75557/intel-xeon-phi-processors.html

[4] Omar G Abood and Shawkat K Guirguis. 2018. A survey on cryptography

algorithms. International Journal of Scientific and Research Publications 8, 7 (2018),
495–516.

[5] Onur Acıiçmez and Werner Schindler. 2008. A vulnerability in RSA implemen-

tations due to instruction cache analysis and its demonstration on OpenSSL. In

Cryptographers’ Track at the RSA Conference. Springer, 256–273.
[6] Hassan Aly and Mohammed ElGayyar. 2013. Attacking aes using bernstein’s

attack on modern processors. In Progress in Cryptology–AFRICACRYPT 2013: 6th
International Conference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013.
Proceedings 6. Springer, 127–139.

[7] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,

Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedara-

man, et al. 2019. Cascade lake: Next generation intel xeon scalable processor.

IEEE Micro 39, 2 (2019), 29–36.
[8] Daniel J. Bernstein. 2005. Cache-timing attacks on AES.

701

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/processors/ryzen
https://www.anandtech.com/show/16315/the-ampere-altra-review/3
https://www.anandtech.com/show/16315/the-ampere-altra-review/3
https://www.anandtech.com/show/16315/the-ampere-altra-review/3
https://www.anandtech.com/show/16315/the-ampere-altra-review/3
https://ark.intel.com/content/www/us/en/ark/products/series/75557/intel-xeon-phi-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/75557/intel-xeon-phi-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/75557/intel-xeon-phi-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/75557/intel-xeon-phi-processors.html

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Farabi Mahmud, Sungkeun Kim, Harpreet Singh Chawla, EJ Kim, Chia-Che Tsai, and Abdullah Muzahid

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[10] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing Attacks against

AES. In Proceedings of the 8th International Conference on Cryptographic Hardware
and Embedded Systems (Yokohama, Japan) (CHES’06). Springer-Verlag, Berlin,
Heidelberg, 201–215. https://doi.org/10.1007/11894063_16

[11] Shekhar Borkar. 1999. Design challenges of technology scaling. IEEE micro 19, 4
(1999), 23–29.

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:{SGX} cache
attacks are practical. In 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17).

[13] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth. 2020.

Reload+ refresh: Abusing cache replacement policies to perform stealthy cache

attacks. In Proceedings of the 29th USENIX Conference on Security Symposium.

1967–1984.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous

computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[15] Intel Corporation. June, 2023. Intel
©
64 and IA-32 Architectures Software Devel-

oper’s Manual. Accessed on 2023-09-18.

[16] Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999).

[17] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and

Mengjia Yan. 2022. Don’t Mesh Around:{Side-Channel} Attacks and Mitigations

on Mesh Interconnects. In 31st USENIX Security Symposium (USENIX Security 22).
2857–2874.

[18] Douglas Doerfler, Brian Austin, Brandon Cook, Jack Deslippe, Krishna Kandalla,

and Peter Mendygral. 2018. Evaluating the networking characteristics of the Cray

XC-40 Intel Knights Landing-based Cori supercomputer at NERSC. Concurrency
and Computation: Practice and Experience 30, 1 (2018), e4297.

[19] Michael Godfrey and Mohammad Zulkernine. 2013. A server-side solution to

cache-based side-channel attacks in the cloud. In 2013 IEEE Sixth International
Conference on Cloud Computing. IEEE, 163–170.

[20] James Goodman and HHJ Hum. 2004. Mesif: A two-hop cache coherency protocol

for point-to-point interconnects (2004). (2004).

[21] Ben Gras, Kaveh Razavi, Herbert Bos, Cristiano Giuffrida, et al. 2018. Translation

Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks..

In USENIX Security Symposium, Vol. 216.

[22] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using

Hardware Transactional Memory.. In USENIX Security Symposium. 217–233.

[23] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279–
299.

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template

attacks: Automating attacks on inclusive last-level caches. In 24th {USENIX}
Security Symposium ({USENIX} Security 15). 897–912.

[25] Shay Gueron. 2008. Advanced encryption standard (AES) instructions set. Intel,
http://softwarecommunity. intel. com/articles/eng/3788. htm, accessed 25 (2008).

[26] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games–

bringing access-based cache attacks on AES to practice. In 2011 IEEE Symposium
on Security and Privacy. IEEE, 490–505.

[27] Berk Gülmezoğlu, Mehmet Sinan undefinednci, Gorka Irazoqui, Thomas Eisen-

barth, and Berk Sunar. 2015. A Faster and More Realistic Flush+Reload Attack

on AES. In Revised Selected Papers of the 6th International Workshop on Con-
structive Side-Channel Analysis and Secure Design - Volume 9064 (Berlin, Ger-

many) (COSADE 2015). Springer-Verlag, Berlin, Heidelberg, 111–126. https:

//doi.org/10.1007/978-3-319-21476-4_8

[28] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2022. Adversarial

prefetch: New cross-core cache side channel attacks. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 1458–1473.

[29] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. 2009. Multi-class adaboost.

Statistics and its Interface 2, 3 (2009), 349–360.
[30] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos,

Ronak Singhal, and Ravi Iyer. 2016. Cache QoS: From concept to reality in the

Intel® Xeon® processor E5-2600 v3 product family. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 657–668.

[31] Bruce Hoeneisen and Carver A Mead. 1972. Fundamental limitations in micro-

electronics—I. MOS technology. Solid-State Electronics 15, 7 (1972), 819–829.
[32] Marcos Horro, Mahmut T Kandemir, Louis-Noël Pouchet, Gabriel Rodríguez, and

Juan Touriño. 2019. Effect of distributed directories in mesh interconnects. In

Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[33] CAT Intel. 2015. Improving real-time performance by utilizing cache allocation

technology. Intel Corporation, April (2015).
[34] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a minute! A fast, Cross-VM attack on AES. In International Workshop on
Recent Advances in Intrusion Detection. Springer, 299–319.

[35] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a Minute! A fast, Cross-VM Attack on AES. In Research in Attacks, Intrusions
and Defenses, Angelos Stavrou, Herbert Bos, and Georgios Portokalidis (Eds.).

Springer International Publishing, Cham, 299–319.

[36] Aamer Jaleel, Matthew Mattina, and Bruce Jacob. 2006. Last level cache (llc)

performance of data mining workloads on a cmp-a case study of parallel bioinfor-

matics workloads. In The Twelfth International Symposium on High-Performance
Computer Architecture, 2006. IEEE, 88–98.

[37] Nan Jiang, Daniel U Becker, George Michelogiannakis, James Balfour, Brian

Towles, David E Shaw, John Kim, and William J Dally. 2013. A detailed and

flexible cycle-accurate network-on-chip simulator. In 2013 IEEE international
symposium on performance analysis of systems and software (ISPASS). IEEE, 86–
96.

[38] Ji-Sun Kang, Hunjoo Myung, and Jin-Hee Yuk. 2021. Examination of compu-

tational performance and potential applications of a global numerical weather

prediction model MPAS using KISTI Supercomputer NURION. Journal of Marine
Science and Engineering 9, 10 (2021), 1147.

[39] Mehmet Kayaalp, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Aamer Jaleel.

2016. A high-resolution side-channel attack on last-level cache. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[40] Richard E Kessler and Mark D Hill. 1992. Page placement algorithms for large

real-indexed caches. ACM Transactions on Computer Systems (TOCS) 10, 4 (1992),
338–359.

[41] Changkyu Kim, Doug Burger, and Stephen W Keckler. 2002. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip caches. In Proceedings
of the 10th international conference on Architectural support for programming
languages and operating systems. 211–222.

[42] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. {STEALTHMEM}:
System-level protection against cache-based side channel attacks in the cloud. In

21st {USENIX} Security Symposium ({USENIX} Security 12). 189–204.
[43] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative

execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974–987.

[44] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn,

Jung Hwan Song, Yongjin Yeom, E-Joong Yoon, Sangjin Lee, Jaewon Lee, et al.

2004. New block cipher: ARIA. In Information Security and Cryptology-ICISC
2003: 6th International Conference, Seoul, Korea, November 27-28, 2003. Revised
Papers 6. Springer, 432–445.

[45] ARM Limited. 2001. ARM
©
Developer Suite. Accessed on 2023-09-18.

[46] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks

in cloud computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406–418.

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-

level cache side-channel attacks are practical. In 2015 IEEE symposium on security
and privacy. IEEE, 605–622.

[48] James Lujan, Manuel Vigil, Garrett Kenyon, Karissa Sanbonmatsu, and Brian

Albright. 2017. Trinity Supercomputer Now Fully Operational. Technical Report.
Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

[49] Andrew Marshall, Michael Howard, Grant Bugher, Brian Harden, Charlie Kauf-

man, Martin Rues, and Vittorio Bertocci. 2010. Security best practices for devel-

oping windows azure applications. Microsoft Corp 42 (2010), 12–15.

[50] Shiho Moriai, Akihiro Kato, and Masayuki Kanda. 2005. Addition of Camellia
cipher suites to transport layer security (TLS). Technical Report.

[51] Hassan Mujtaba. [n. d.]. Intel Skylake-X and Skylake-SP Mesh Architecture For

XCC “Extreme Core Count" CPUs Detailed – Features Higher Efficiency, Higher

Bandwidth and Lower Latency. https://wccftech.com/intel-skylake-x-skylake-

sp-mesh-architecture-interconnect/

[52] Naveen Muralimanohar and Rajeev Balasubramonian. 2007. Interconnect design

considerations for large NUCA caches. ACM SIGARCH Computer Architecture
News 35, 2 (2007), 369–380.

[53] Michael Neve and Jean-Pierre Seifert. 2006. Advances on access-driven cache

attacks on AES. In International Workshop on Selected Areas in Cryptography.
Springer, 147–162.

[54] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Cryptographers’ track at the RSA conference.
Springer, 1–20.

[55] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of

the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are

Practical. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association. https://www.usenix.org/conference/usenixsecurity21/presentation/

702

https://doi.org/10.1007/11894063_16
https://doi.org/10.1007/978-3-319-21476-4_8
https://doi.org/10.1007/978-3-319-21476-4_8
https://wccftech.com/intel-skylake-x-skylake-sp-mesh-architecture-interconnect/
https://wccftech.com/intel-skylake-x-skylake-sp-mesh-architecture-interconnect/
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella

Attack of the Knights: A Non Uniform Cache Side-Channel Attack ACSAC ’23, December 04–08, 2023, Austin, TX, USA

paccagnella

[56] Matt Caswell Pauli Dale. Jan 30,2022. aes: make the no-asm constant

time code path not the default. https://github.com/openssl/openssl/commit/

1f7c5c56c7365fefd9cff9bea4d3d27346ca44d1. Accessed on 2023-09-18.

[57] Colin Percival. 2005. Cache missing for fun and profit.

[58] Moinuddin KQureshi. 2019. New attacks and defense for encrypted-address cache.

In Proceedings of the 46th International Symposium on Computer Architecture. 360–
371.

[59] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and Johanna

Sepúlveda. 2016. Side channel attack on NoC-based MPSoCs are practical: NoC

Prime+ Probe attack. In 2016 29th Symposium on Integrated Circuits and Systems
Design (SBCCI). IEEE, 1–6.

[60] TIRIAS Research. 2018. AMD Optimizes EPYC Memory with NUMA. Available

at https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-

With-NUMA.pdf (2021/08/12). https://www.amd.com/system/files/2018-03/

AMD-Optimizes-EPYC-Memory-With-NUMA.pdf

[61] Bruce Schneier. 2005. Description of a new variable-length key, 64-bit block

cipher (Blowfish). In Fast Software Encryption: Cambridge Security Workshop
Cambridge, UK, December 9–11, 1993 Proceedings. Springer, 191–204.

[62] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In

International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 3–24.

[63] Avinash Sodani. 2015. Knights landing (knl): 2nd generation intel® xeon phi

processor. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 1–24.
[64] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel, Tommy

Minyard, Susan Mehringer, Eric Wernert, H Tufo, D Panda, et al. 2017. Stampede

2: The evolution of an xsede supercomputer. In Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact. 1–8.

[65] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An

Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article 18 (April 2018),

26 pages. https://doi.org/10.1145/3177872

[66] Simon M Tam, Harry Muljono, Min Huang, Sitaraman Iyer, Kalapi Royneogi,

Nagmohan Satti, Rizwan Qureshi, Wei Chen, Tom Wang, Hubert Hsieh, et al.

2018. SkyLake-SP: A 14nm 28-Core xeon® processor. In 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 34–36.

[67] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on

AES, and countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.

[68] Joop Van de Pol, Nigel P Smart, and Yuval Yarom. 2015. Just a little bit more. In

Cryptographers’ Track at the RSA Conference. Springer, 3–21.
[69] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the 34th annual
international symposium on Computer architecture. 494–505.

[70] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan Kastner,

Frederic T Chong, and Timothy Sherwood. 2013. Surfnoc: A low latency and

provably non-interfering approach to secure networks-on-chip. ACM SIGARCH
Computer Architecture News 41, 3 (2013), 583–594.

[71] Wenjie Xiong and Jakub Szefer. 2020. Leaking information through cache LRU

states. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 139–152.

[72] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are coherence

protocol states vulnerable to information leakage?. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 168–179.

[73] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces

Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryptol. ePrint
Arch. 2014 (2014), 140.

[74] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high resolution,

low noise, L3 cache side-channel attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 719–732.

[75] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2011. Predictive mitiga-

tion of timing channels in interactive systems. In Proceedings of the 18th ACM
conference on Computer and communications security. 563–574.

[76] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2012. Cross-

VM side channels and their use to extract private keys. In Proceedings of the 2012
ACM conference on Computer and communications security. 305–316.

[77] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-

tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 990–1003.

703

https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
https://github.com/openssl/openssl/commit/1f7c5c56c7365fefd9cff9bea4d3d27346ca44d1
https://github.com/openssl/openssl/commit/1f7c5c56c7365fefd9cff9bea4d3d27346ca44d1
https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf
https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf
https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf
https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf
https://doi.org/10.1145/3177872

	Abstract
	1 Introduction
	2 Background & Related Works
	2.1 Non-Uniform Cache Access Architecture
	2.2 Cache Side-channel Attacks
	2.3 Other NoC-based Side-Channel Attacks
	2.4 Comparison with Existing Attacks
	2.5 Advanced Encryption Standard (AES)

	3 Target Architecture Details
	3.1 Memory Configuration
	3.2 LLC Organization

	4 Assumptions & Threat Model
	5 Implementation
	5.1 A NUCA Distance-based Side-channel in a Simulated Machine
	5.2 Attack on Intel Xeon Phi 7290
	5.3 Generalizability of Attack

	6 Experiment
	6.1 Results from Gem5 simulation
	6.2 Covert-channel Experiments
	6.3 Side-channel Results

	7 Possible Defense
	8 Conclusion
	Acknowledgments
	References

