
Enhancing Program Analysis with Deterministic
Distinguishable Calling Context

Sungkeun Kim
Samsung Research

Seoul, Republic of Korea
sk84.kim@samsung.com

Khanh Nguyen
Texas A&M University
College Station, USA
khanhtn@tamu.edu

Chia-Che Tsai
Texas A&M University
College Station, USA
chiache@tamu.edu

Jaewoo Lee
Texas A&M University
College Station, USA
jaewoo2@tamu.edu

Abdullah Muzahid
Texas A&M University
College Station, USA

abdullah.muzahid@tamu.edu

Eun Jung Kim
Texas A&M University
College Station, USA
ejkim@tamu.edu

Abstract

Calling context is crucial for improving the precision of pro-
gram analyses in various use cases (clients), such as pro�ling,
debugging, optimization, and security checking. Often the
calling context is encoded using a numerical value. We have
observed that many clients bene�t not only from a determin-

istic but also globally distinguishable value across runs to
simplify bookkeeping and guarantee complete uniqueness.
However, existing work only guarantees determinism, not
global distinguishability. Clients need to develop auxiliary
helpers, which incurs considerable overhead to distinguish
encoded values among all calling contexts.
In this paper, we propose Deterministic Distinguishable

Calling Context Encoding (DCCE) that can enable both prop-
erties of calling context encoding natively. The key idea of
DCCE is leveraging the static call graph and encoding each
calling context as the running call path count. Thereby, a
mapping is established statically and can be readily used by
the clients. Our experiments with two client tools show that
DCCE has a comparable overhead compared to two state-
of-the-art encoding schemes, PCCE and PCC, and further
avoids the expensive overheads of collision detection, up to
2.1× and 50%, for Splash-3 and SPEC CPU 2017, respectively.

CCS Concepts: • Theory of computation → Program

analysis; • Software and its engineering→ Automated

static analysis.

Keywords: Calling context, Context-sensitive pro�ling and
optimization

ACM Reference Format:

Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdul-

lah Muzahid, and Eun Jung Kim. 2025. Enhancing Program Analysis

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CC ’25, Las Vegas, NV, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1407-8/25/03

h�ps://doi.org/10.1145/3708493.3712679

with Deterministic Distinguishable Calling Context. In Proceedings

of the 34th ACM SIGPLAN International Conference on Compiler Con-

struction (CC ’25), March 1–2, 2025, Las Vegas, NV, USA. ACM, New

York, NY, USA, 12 pages. h�ps://doi.org/10.1145/3708493.3712679

1 Introduction

Program analysis is paramount in helping developers grap-
ple with large code bases and complex logic. To improve
precision, an analysis is enhanced with calling context in-
formation [34]. A calling context represents the sequence of
function calls starting from the main function to the current
point of interest. The enhanced analysis thus has a �ner-
grained view of the application’s behavior based on di�erent
execution paths. There is a large body of work on context-
sensitive analyses for program optimization [18, 35, 41], de-
bugging and testing [2, 11, 13, 42, 48, 49], security check-
ing [16, 17, 23, 38], and others [9, 10, 14, 15, 21, 22, 27, 31, 52].

A calling context is commonly encoded using a numerical
value, which we refer to as CCID (Calling Context IDenti�er).
Encoding saves memory compared to alternatives such as
strings. Encoding also reduces the time cost of the analy-
sis (e.g., two calling contexts can be easily checked by two
di�erent numerical values instead of performing a string
comparison). However, encoding obfuscates the call chain,
and thus requires a decoder to recover the list of call sites to
make the analysis human-explainable. A naïve solution of
recording a mapping between the numerical value and the
concrete call chain in each program run incurs prohibitive
space and time overheads.

The majority of existing works focus on encoding, i.e., gen-
erating a CCID [9, 12, 25, 44, 50, 51, 53]. We have observed
that many critical client tools may bene�t from CCIDs to
be not only deterministic but also globally distinguishable

across all functions, as shown in Table 1. The bene�t of
determinism is clear. Deterministic CCIDs allow the same
calling context to be recognized without ambiguity across
di�erent runs of the analysis (i.e., inter-run). Distinguish-
able CCIDs are bene�cial within a speci�c run (i.e., intra-
run). CCIDs that are globally distinguishable help identify

1

https://orcid.org/0000-0003-0855-2443
https://orcid.org/0000-0003-0400-1070
https://orcid.org/0000-0002-0016-6487
https://orcid.org/0009-0004-8801-3080
https://orcid.org/0000-0001-8145-815X
https://orcid.org/0000-0002-2590-698X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708493.3712679
https://doi.org/10.1145/3708493.3712679
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708493.3712679&domain=pdf&date_stamp=2025-02-25

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

Table 1. Use of calling contexts in various client tools.

May Need Global

Distinguishability?

May Need

Determinism?

Fuzzing [10, 15] Yes Yes

Pro�ling [21, 22, 29, 52] Yes Yes

Malware Analysis [14] Yes Yes

Control-Flow Integrity [31] No No

Pointer Analysis [27] Yes No

unique calling contexts, thereby enabling fast lookup and
eliminating the need for decoding (to disambiguate). For
instance, fuzzing [10, 15] aims to enhance the exploration
of new test cases without the complex constraint solving
of symbolic execution [24]. A deterministic and globally
distinguishable CCID helps these tools avoid unnecessarily
revisiting program paths and hence, improving test cover-
age. Security-checking tools [14, 23, 31] often use a white-
list-based approach for violation detection. Speci�cally, in
pro�ling runs, �ne-grained memory accesses (e.g., calling
context and memory access patterns) are recorded, and are
associated with deterministic and globally distinguishable
CCIDs to be checked at production time. As another exam-
ple, in pro�ling tools [21, 22, 29, 52], in�ated pro�led data
collected from test inputs that trigger similar behaviors can
be reduced with the help of deterministic and globally dis-
tinguishable CCIDs. Existing works such as PCCE [44] only
provide determinism and local distinguishability. There is no
work that can provide both natively. The clients must take
extra steps to create a globally distinguishable CCID, includ-
ing performing collision detection during runtime to detect
the cases where the same CCID is reused for di�erent calling
contexts. These steps, however, add considerable overhead,
ranging up to 23.6× compared to the native performance.
In this paper, we propose an encoding scheme ensuring

determinism and globally distinguishable CCIDs, called De-

terministic/Distinguishable Calling Context Encoding (DCCE),
which in turn, enables a lightweight decoding algorithm. To
our knowledge, this is the �rst work that identi�es the re-
quirement of deterministic and globally distinguishable call-
ing context encoding and that achieves (almost) both prop-
erties with a static scheme. The key challenge of this work
is that, in order to make the calling context encoding distin-
guishable, the call graph is mapped into a non-overlapping
numerical space. We solve the challenge by, conceptually,
iterating all calling contexts ordered by a pre-order traversal
of the call graph. Each context is then given an incremental
value, which ensures no two contexts have the same CCID.
For call graphs with recursion, one CCID is used for an entire
loop regardless of how many times the loop is executed. As
such, our CCID is almost globally distinguishable. To address

Table 2. Summary of encoding schemes.

Globally

Distinguishable?
Deterministic? Client Impact

PCCE [25, 44, 50, 53] No Yes High

PCC [9] Probabilistically Yes Low

Dynamic Call Path

Pro�ler [12, 51]
Yes No High

DCCE (this work) Yes (for non-DAG) Yes Low

the determinism requirement, our solution is similar to exist-
ing works. Speci�cally, each call site on a call path is assigned
statically a �xed edge weight. The CCIDs can be obtained
by summing all of such edge weights. The calculation of the
edge weight will be explained in §3.1. Because the weights
are �xed, these CCIDs are guaranteed to be deterministic
across di�erent runs.

In summary, the contributions of this paper are as follows:
• We propose a calling context encoding algorithm
whose encoded values are deterministic across runs
and (almost) globally distinguishable across all possi-
ble calling contexts.
• We present a formal proof of the global distinguisha-
bility of the encoding scheme.
• We provide a thorough evaluation of the overhead of
the encoding scheme and compare it to two state-of-
the-art schemes, PCCE and PCC, and show signi�cant
performance improvement due to avoidance of colli-
sion detection at runtime.

2 Existing Encoding Schemes

In this Section, we introduce state-of-the-art encoding
schemes and discuss whether they can provide global distin-
guishability and determinism in Table 2.

2.1 Precise Calling Context Encoding (PCCE)

PCCE [25, 44, 50, 53] extends the Ball-Larus algorithm [6]
that encodes control �ows in a program to encoding calling
contexts. Each callee =’s context ID is the sum of caller ?’s
context ID and a factor which is the position 8 of such caller
? in the sequence of callers ?8 in the static call graph. 8
is stored in the graph edge ? → = as weight. The CCIDs
encoded by PCCE are distinct among callees of the same
caller (i.e., locally distinguishable).

Figure 1a shows an example of a weighted call graph. The
path ABD has a context ID of 0 and the path ACD’s context
ID is 1. By construction, the encoded context by PCCE is
not distinguishable among all paths. For instance, ABDE and
ABDF have an ID of 0 and paths ACDE and ACDF 1. As such,
PCCE will return to users all possible calling contexts when
decoding a value. However, the encoding is deterministic
thanks to the static weighted call graph.

2

Enhancing Program Analysis with Deterministic Distinguishable Calling Context CC ’25, March 1–2, 2025, Las Vegas, NV, USA

0
A

B

D

E F

C

0

10

0 0

(a) PCCE [44]

1
A

B

D

E F

C

5

11

1 2

(b) DCCE (this work)

F

D

B

A

E

C

1 1

11

11

(c) DrCCTProf [51]

A

B

D

E F

3*0+1=1
1

2

4

5 6

3*1+2=5

3*5+4=19

3*19+6=63

(d) PCC [9]

(on dynamic graph)

PCCE DCCE PCC

A 0 0 1

AB 0 1 5

ABD 0 2 19

ABDE 0 3 62

ABDF 0 4 63

AC 0 5 6

ACD 1 6 22

ACDE 1 7 71

ACDF 1 8 72

Call Path
Encoded Calling Context

(e) Comparisons of di�erent consis-

tent encodings.

Figure 1. Example of calling context encodings. PCCE and DCCE increment calling context value by edge weights on the call
path. DrCCTProf increments by one for every new function call. PCC uses function 3 ∗+ + 20;;_B8C4_�� .

2.2 Probabilistic Calling Context (PCC)

PCC [9] comes close to achieve global distinguishability and
determinism. It dynamically encodes the context at a call
site using a non-commutative, composable linear function
3 ∗+ + 2B where + is the context ID at the caller and 2B is a
statically-assigned ID of the current call site. Figure 1d shows
an example of encoding the path ABDF as 3∗ 19+6 = 63, with
19 being the context of the caller D and 6 the static ID of the
call site where D calls F.

While deterministic, PCC value is not entirely distinguish-
able because the encoding function is not con�ict-free. How-
ever, it has been shown that, with up to 10 million values,
the expected number of collisions is negligible (less than
0.1% for 64-bit values). PCC leverages open-address hashing
and double hashing to resolve collisions at run time. Due
to the combination of the encoding function and the use of
hashing, decoding PCC is more computationally demanding
compared to other approaches [8].

2.3 Dynamic Call Path Pro�ling

Also known as stack shadowing, these schemes such as
CCTLib [12] and DrCCTProf [51] monotonically assign a
numeric value to new call paths during execution. This is
equivalent to implicitly assigning each graph edge a weight
of 1. For example, in Figure 1c, starting from A, the path
AC can be assigned the ID of 1 if C is the �rst function to
be called at run time. Otherwise, if C is last, the context’s
ID will be assigned a value 5. Because the numeric values
and the calling contexts do not correlate, while the value is
globally distinguishable, there is no determinism. As such,
decoding is expensive as one has to store concrete call chains,
eliminating the bene�ts of context encoding altogether.

3 Deterministic/Distinguishable Calling
Context Encoding (DCCE)

In this Section, we describe Deterministic/Distinguishable
Calling Context Encoding (DCCE). First, we introduce the
algorithm that assigns weights to each edge in a call graph to

Program Call graph Weighted graph

DCCE

Figure 2. DCCE Overview. A call graph is constructed stati-
cally from a program. The encoding algorithm computes a
weight to each edge. A call path to the bottom left node is
shown in the weighted graph. A CCID is the sum of edge
weights on the path.

guarantee globally distinguishable CCID calculation. Then
we show proofs of the global distinguishability of DCCE,
followed by the decoding algorithm.

Overview. Figure 2 shows an overview. Given a program,
a call graph is constructed statically. The encoding algorithm
runs on this static graph to compute a weight for each edge,
shown in Figure 2 by di�erent colors. Encoded context, i.e.,
CCID, is obtained by adding the weight of edges on the path
starting from the root node. The key property of DCCE is to
compute these weights in a way that CCID is guaranteed to
be globally distinguishable. Speci�cally, CCID is the running
path count in the call graph following a preorder traversal.
Because edge weights are �xed, CCIDs are deterministic. Be-
cause DCCE relies on the static call graph, distinguishing
di�erent iteration of a loop is not feasible, our heuristic is to
use one CCID for an entire loop, regardless of the number
of iterations at run time. The details of this handling will be
discussed in §3.4.
We start the discussion of the encoding scheme by for-

mally de�ning terminologies.

De�nition 3.1. A call graph (CG) is a directed multigraph
with a pair of sets (N, E) where node = ∈ N represents a
function in the program, and an edge 4 ∈ E exists between
nodes ? and = if ? calls =.

Figure 3 shows an example of a call graph. Table 3 contains
auxiliary functions to query the graph. Where convenient,

3

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

p

n
1 n

2
n
m

…… …

…

1 a 1 b 1 x

Figure 3. A call graph example. Triangles under nodes
=1, =2, . . . , =< are subgraphs rooted at such nodes. 0, 1, and G
are numbers of edges from ? to =1, =2, . . . , =< , respectively.

Table 3. Auxiliary functions used in the paper.

src(e) /

caller(e)

source of an edge 4 , i.e., the caller ?

dest(e) /

callee(e)

destination of an edge 4 , i.e., the callee =

callees(p) a total order set of all callees =8 called by ?

edges(p) a total order set of all edges 48 from caller node ?

edges(p,n) a subset of 4364B(?), i.e., a total order set of all

edges 48 from caller node ? to callee node =

index(e) position 8 of edge 4 in the set 4364B(BA2(4), 3BC (4))

p

c2c1

m

call paths

explored

new, m+1th call path

hence, weight is m+1

Figure 4. Intuition of assigning edge weight.

we refer to an edge 4 as a quadruple (?, =, ;,F), with ; is the
;Cℎ site (in program order) where ? calls =, i.e., ; = 8=34G(4);
andF is the weight of the edge 4 .

De�nition 3.2. A call path from a node ? to a node =,
CP(? ,=) is a chain of edges 41, 42, . . . , 4< through which
= is reachable from ? , i.e., src(41)=? , dest(4<)==, and dest(48)
= src(48+1), 1 ≤ 8 < <.

De�nition 3.3. A calling context of a node =, CC(=) is a call
path from the root node A to =, i.e., CC(=) = CP(A, =).

3.1 Computing Edge Weights

In this work, an encoded calling context, CCID(=) is the sum
of edge weights on a call path from the root node A to =, as
done in other works [25, 44, 50, 53]. By statically assigning
each call edge a weight, a CCID is deterministically (and
cheaply) obtained by summing up all edge weights on a call
path. The key challenge of DCCE is determining the edge
weights so that CCIDs are globally distinguishable.

Figure 4 illustrates the intuition of assigning edge weights
to guarantee the distinguishability of CCIDs. An edge 4 can
be seen as a cut of a subgraph rooted at the caller, separating

the visited subgraph (shaded) from the unvisited one. If there
is no previously visited edge, 4 is assigned a weight of 1. If
there are some call paths visited before, the weight of 4 must
be larger than that number. This guarantees the CCID is
incremental and re�ects the running path count of the graph.
In Figure 4, edge ? → 22 is a new path, after exploring the
left subtree of ? through 21 with m paths. Correspondingly,
the weight of edge ? → 22 is assigned m+1.
Formally, an edge 4’s weight, CCW(4) is de�ned as:

CCW(4) = CCW(?, =, ;, _)

=
∑

:

{

NCP(=′
:
) × NE(?, =′

:
)

}

,∀=′
:
∈ 20;;44B(?), =′

:
< =,

+

{

NCP(=) × (; − 1)

}

+1

where:
• NE(?, =) = |4364B(?, =)|, i.e., the number of edges from
caller ? to callee =
• NCP(=) is the number of call paths from node = to all
reachable nodes plus one. If = has no outgoing edge,
NCP(=) is one.

The �rst term (
∑

) of the de�nition represents all call paths
visited through =’s siblings. The next term accounts for cases
where there are multiple edges from ? to =, in which case,
this term is the number of call paths visited through = itself.
The (+1) ensures CCIDs are always increasing.

Algorithm 1 shows how to compute edge weight via com-
puting #�% . Each node G maintains a variable #�% to store
the total number of call paths starting from G . #�% is ini-
tialized with one and will not be updated if G does not have
any outgoing edge. Given a call graph, we start a Depth-First
Search (DFS) traversal from the root node. The recursive
function visit() returns the updated #�% and that is accu-
mulated to#�% of the caller ? (Lines 11 and 10, respectively).
If a callee = is visited, we do not have to visit = again because
#�% (=) is already computed; we accumulate #�% (=) to that
of ? (Line 8). Before following any new edge, the weightF
is assigned the current value of #�% (?) (Line 6).

Algorithm 1: Computation of ��, and #�%

1 def visit (?) :

2 �′ ← 4364B(?)

3 #�% (?)← 1

4 ?.E8B8C43 ← CAD4

5 foreach 4 = (?, =, _,F) ∈ �′ do

6 F ← #�% (?)

7 if n.visited then

8 #�% (?) += #�% (=)

9 else

10 #�% (?) += visit(=)

11 return #�% (?)

4

Enhancing Program Analysis with Deterministic Distinguishable Calling Context CC ’25, March 1–2, 2025, Las Vegas, NV, USA

Figure 5 shows an example of DCCE at a caller ? , comput-
ing weight of outgoing edges to callees =1, =2, and =3. With
the �rst edge: 41 (? → =1), we assign the weight of one (the
current value of #�% (?)) because there is no call path being
explored yet. With edge 42, because we already visited the
subgraph rooted at =1 through 41, #�% (=1) is known, we as-
sign #�% (?) = #�% (=1) + 1 to 42’s weight (Figure 5a). Next,
for edge 43 (? → =2), value of 2 × #�% (=1) + 1 is assigned
where 2 × #�% (=1) is the total number of call paths visited
so far (Figure 5b). Similarly, as shown in Figure 5c, we assign
44’s weight 2 × #�% (=1) + #�% (=2) + 1.

Calculating CCID at run time. CCID can be calculated
by add/subtract edge weightF to/from a global value ��+
before and after each call site. This ��+ is the encoded
context at the caller. Algorithm 1 guarantees that the CCID
assigned to a new path is always unique and at least one
greater than the running ��+ .
Figure 5d to Figure 5f show a concrete example of a call

graph with CCID updated. 11 di�erent CCIDs are assigned
to distinguish 11 calling contexts.

3.2 Proof of Global Distinguishability of DCCE

Lemma 3.4. ∀D, E ∈ N in CG (N,E), D ̸= E , if ����(D) is

assigned later than ����(E), then ����(D) > ����(E).

Proof. We prove Lemma 3.4 by exhaustion, based on two
cases when visiting a node in the call graph:

Case 1: The �rst child of node ? . Algorithm 1will assign
one as weight (Line 6) and thus, ����(=1) = ����(?) + 1

Case 2: Another child =2 of node ?. After visiting the
�rst child node =1, #�% (=1) is computed, and accumulated
into #�% (?), which is assigned as weight of the edge ? →
=2. That is, ����(=2) = ����(?) + #�% (?) = ����(?) +

#�% (=1) + 1 with #�% (?) = #�% (=1) + 1 being the weight
computed by Algorithm 1. Hence, ����(=2) > ����(=1).
Because the assigned weight is proportional to #�% (?),

which accumulates the number of call paths from ? , it is
guaranteed to be non-decreasing. Therefore, the CCID of
any child = 9 is larger than that of any child =8 visited earlier
(cf. Figure 5a to Figure 5c).
We now prove that for all call paths from node =1 to an-

other node~ in the subgraph rooted at=1, because~ is visited
before =2, ����(~) < ����(=2). Consider an edge in this
subgraph 4 = (=1, G, ;,F), its weightF (cf. §3.1) is:

��, (4) =
∑

:

{

#�% (=′
:
) × #�(=1, =

′
:
)

}

+#�% (G) × (; − 1) + 1

=
∑

:

{

#�% (=′
:
) × #�(=1, =

′
:
)

}

+#�% (G) × ; − #�% (G) + 1

=
∑

:

{

#�% (=′
:
) × #�(=1, =

′
:
)

}

+#�% (G) × #�(=1, G) + 1

− #�% (G)

The boxed terms are no more than #�% (=1), due to, by def-
inition, #�% (=1) includes the number of paths from visited
subtree(s), subtree at G , and unvisited subtree(s). Hence,

��, (4) ≤ #�% (=1) − #�% (G)

That is, an edge 4’s weight is no more than #�% (20;;4A (4))−

#�% (20;;44(4)). As such, for any call path of length< from
=1 to ~:

∑

48 ∈�% (=1,~)

��, (48) ≤
∑

48 ∈�% (=1,~)

#�% (20;;4A (48)) − #�% (20;;44(48))

≤ #�% (20;;4A (41)) − #�% (20;;44(4<))

≤ #�% (=1) − #�% (~)

< #�% (=1) because #�% (~) ≥ 1

Therefore, ∀~

����(~) = ����(=1) +
∑

48

��, (48) how CCID is computed

����(~) < ����(=1) + #�% (=1)
∑

48

��, (48) < #�% (=1)

����(~) < ����(?) + 1 + #�% (=1) Case 1 : ����(=1) =

����(?) + 1

����(~) < ����(=2) Case 2 : ����(=2) =

����(?) + #�% (=1) + 1

Hence proved that ����(=2) is larger than the CCID of
any visited node. □

Theorem 3.5. (Distinguishability) ∀D, E ∈ N in CG (N,E), if

D ̸= E , ����(D) ̸= ����(E).

Proof. We prove this by contradiction. Let us assume that
����(D) and ����(E) are not distinguishable. That is, ∃
D, E ∈ N where ����(D) = ����(E) when D ̸= E . However,
if D ̸= E , either ����(D) is assigned earlier than ����(E) or
����(E) is assigned earlier than ����(D). By Lemma 3.4, if
����(D) is assigned earlier than ����(E), then ����(D) <

����(E) (and vice versa). In either case,����(D) ̸= ����(E).
Therefore, there is no such D and E , thus contradicting the
assumption. As such, the Theorem is true. □

3.3 Decoding Algorithm

Unlike other approaches [9, 44], thanks to DCCE, decoding is
lightweight and a greedy algorithm, as shown in Algorithm 2.
From the root, it iterates through outgoing edges, sorted
by weight. It adds callee’s name (Line 9) to the result and
decrements the queried CCID by the �rst edge whose weight
F < CCID. Decoding recursively follows the chosen edge
and keeps decrementing until the CCID equals zero.

It is worth noting that analyses with DCCE have no needs
for this decoder. Because DCCE’s CCIDs are globally distin-
guishable, analyses have the guarantee that any two calling
contexts will result in two di�erent CCID values. We provide

5

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

e1 e2

(a) After visit a node =1.

e3

(b) After visit a node =2.

e4

(c) After visit a node =3.

B

A
1

C

1

CCID=0

CCID=1/3

CCID=2/4

D

3

E

F

G

5

2

1

NCP

(d) After visiting the left subtree.

B

A
1

C

1

CCID=0

CCID=1/3

CCID=2/4

D

3

E

F

G

CCID=5

CCID=6

CCID=7

CCID=8

5

1 1
1

9

2

1

4

3

2

1

NCP

(e) After visiting the mid subtree.

B

A
1

C

1

CCID=0

CCID=1/3

CCID=2/4

9

D

3

E

F

G

CCID=5

CCID=6

CCID=7/9

CCID=8/10

5

1 1
1

11

2

1

4

3

2

1

NCP

(f) After visiting the right subtree.

Figure 5. A walk-through example of DCCE. Top row: algorithm steps. Bottom row: concrete CCID values in corresponding
steps. Dotted graphs are not visited yet. Callees reachable via multiple paths have CCIDs separated by “/".

Algorithm 2: Decoding Algorithm

1 def decode (����) :

2 ? ← A ⊲ A is root node

3 2>=C4GC ← “main”

4 while ���� ̸= 0 do

5 �′′ ← 4364B(?) // sorted by weight, largest �rst

6 foreach 4 = (?, =, _,F) ∈ �′′ do

7 if ���� >= F then

8 ���� −= F

9 2>=C4GC ← 2>=C4GC • FuncName(=)

10 ? ← =

11 break

12 return 2>=C4GC

this decoding algorithm as a utility to developers to recover
the call path of any CCID if needed.

Example.Consider Figure 5f with a CCID=5. From node A,
there are 4 outgoing edges with weights 1, 3, 5, and 9, respec-
tively. The heaviest edge (9) is clearly incorrect. Among the
other edges, we select the edge with the weight of 5. Because
of our encoding, every CCID is unique and is guaranteed to
have one and only one path whose cumulative edge’s weight
equals 5; hence picking other edges (with weight 1 or 3) is
not correct. The returned call path is AD.

3.4 Recursive Calls

Encoding recursive calls is challenging because the call graph
is no longer a DAG (directed acyclic graph). We consider two

Figure 6. Weighted call
graphs after applying Algo-
rithm 1 with (a) direct and (b)
indirect recursive call

A

B

NCP

2

1

1

2

A

B

4

3

1

C
2

1

1

(a) Direct (b) Indirect

A

B

1

C
1

D

1

1

entry edge

(e)

back edge

(b)

CCID += e.w

push (CCID, A) to entry_stack

call A

CCID -= e.w

pop entry_stack

if (A is in entry_stack) {

 while (A is not top of entry_stack) {

 pop entry_stack

 }

}

if (A is top of entry_stack) {

 push CCID to back_stack

 CCID = entry_stack[top].CCID

 call A

 CCID = pop back_stack

} else {

 CCID += b.w

 call A

 CCID -= b.w

}

Figure 7. Instrumentation to entry edge 4 and back edge 1
for recursion. The current CCID is saved at the entry edge in
entry_stack). At the back edge, the saved CCID is reused.

types of recursive calls: one is when a function has a self-
loop edge (direct recursion), and the other is when a function
calls another function that is in the current calling context,
forming a group of cyclic edges (indirect recursion). In static
analysis, we can identify those “back edges” that connect
back to previously visited nodes. For PCCE, a recursive call
is treated as the entry point of a separate sub-path, and
the encoding is reset to zero after the previous encoding is

6

Enhancing Program Analysis with Deterministic Distinguishable Calling Context CC ’25, March 1–2, 2025, Las Vegas, NV, USA

pushed to the stack. The previous encoding is then popped
and restored when returning from the recursive call. This
is okay because PCCE only support local distinguishability
and can still di�erentiate the calling contexts in a speci�c
function even if the function is in a recursive sub-path.

DCCE takes a similar approach of pushing and popping the
CCIDs when entering a recursive loop but maintains global
distinguishability even between non-recursive call paths
and recursive sub-paths. Consider the example in Figure 6a
where A has a self-loop edge (direct recursive). According to
Algorithm 1, edge�→ � has a weight of 1, and�→ � has a
weight of 2. If we simply add the edgeweight when a function
is called, there is no bound to the CCID values since the edge
� → � can be traversed for an in�nite amount of times.
This is a limitation for both PCCE and DCCE because static
analysis cannot estimate the number of times a recursive call
is taken. For indirect recursive, we consider the example in
Figure 6b, where a back-calling edge � → � creates a loop
between A, B, and C. According to Algorithm 1, the edge
� → � has a weight of 1, so the calling context ABCA will
have CCID=3 and will further increase if the edge �→ � is
traversed repeatedly.
To resolve this issue, we identify two types of special

edges within a call graph. A back edge is an edge that leads
to a previously visited node. Correspondingly, an entry edge

is an incoming edge that shares the same destination as a
back edge. We identify these back edges and entry edges by
searching cyclic sub-graphs within the generated call graph.
When an entry edge is called, the current CCID is pushed into
an entry_stack and is later popped when returning from
the function. When a back edge is called, the current CCID
is pushed into a back_stack and then we set the current
CCID as the CCID at the top of the entry_stack. Figure 7
shows the instrumentation needed at entry and back edges.

3.5 CCID Over�ow

Because DCCE enumerates all paths in the call graph, it is
more prone to value over�ow than techniques such as PCCE
because PCCE leaves some edges with zero weight if there is
only one call path to a function. To mitigate the huge size of
the graph, there are complementary techniques to reduce the
size of call graphs while not impacting the e�ectiveness of
the encoding. For instance, strongly connected components
can be collapsed into one node in the graph [47]. In addition,
through dynamic pro�ling, we may detect the most popular
call paths within a program. By sorting the call paths by
likelihood of occurrence and assigning smaller edge weights
to more popular call paths, we can minimize most of the
CCIDs observed during run time and can actively avoid
over�owing the CCID variables.

3.6 Indirect Calls

For indirect calls, we use precise Andersen-style interproce-
dural points-to analyses [3] to transform an indirect call into

multiple direct calls with conditional branches when build-
ing the call graph. If an unexpected call target is observed for
an indirect call, we provide the feature of dynamically updat-
ing the edge weights at the runtime. To do so, we maintain
a table of maximum numbers of call paths for each function,
and the back trace of each instrumentation location where
the edge weight needs to be updated for adding a new edge
to the function. Then, when a new call target is detected, we
recursively trace back to previously visited functions and
update all edge weights accordingly. We consider this a rare
occasion because the Andersen analysis can determine most
of the indirect call targets under normal circumstances.

3.7 Dynamically Linked Library (DLL)

BecauseDCCE relies on the static call graph, it cannot handle
dynamically linked libraries or code compiled just-in-time
(JIT). We defer to future work to adopt Li et al. [25] to per-
form dynamic encoding.

4 Implementation

We use LLVM (version 12.0.0) as our implementation plat-
form. Call graphs are constructed using the SVF tool [43, 45]
with optimized LLVM IR as input. The weighted graph is
computed (cf. §3) o�ine. The result weighted graph is loaded
by LLVM for static instrumentation. A thread-private vari-
able is used to store the CCID so that no lock is needed for
updating the CCID. For DCCE, the SVF tool instruments
each call instruction by inserting add_weight: CCID += w
before the call instructions and inserting remove_weight:
CCID -= w after the call instructions. For PCCE, only the
call instructions that have edge weight larger than zero are
instrumented. For PCC, a randomly-generated weightF is
assigned to each call instruction, without the consideration
of the call graph. add_weight: CCID = CCID * 3 + w is added
before a call instruction and remove_weight: CCID = (CCID
- w) / 3 is added after a call instruction.

5 Evaluations

We run all experiments on a Dell OptiPlex 3060 Tower
desktop machine with Intel®Core™i7-8700 CPU @ 3.20GHz,
32GB memory, running Ubuntu 20.04.6 LTS with the Linux
kernel 6.2.0. The hard drive is Seagate 2TB SATA 7.2K RPM.

We compare DCCE against PCCE [44] and PCC [9] using
nine and thirteen benchmarks from SPEC CPU 2017 [39]
and Splash-3 [36], respectively, written in C/C++. The ex-
cluded benchmarks (e.g., perlbench, gcc, imagick) are due
to the CCID over�ow, which occurs with PCCE as well.
Benchmark binaries are built using LLVMwith –plugin-opt=-
lto-embed-bitcode=optimized and -O3. We use the provided
inputs from SPEC CPU 2017 and Splash-3 and run each ap-
plication ten times and report the median value. Table 4
summarizes compile-time and run-time statistics.

7

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

Table 4. Compile-time and run-time statistics of SPEC 2017
and Splash-3 benchmark suites. †: The percentage of edges
with zero weight.

Compile time statistics
Run time

statistics

Benchmark Nodes Edges (†)
#Indirect

Calls

Max CCID

(DCCE)

#Call Paths

visited

lbm 25 56 (0.00%) 0 74 10

leela 115 751 (2.40%) 0 4,925 7,055,467

mcf 25 137 (0.73%) 48 188 790

namd 102 1,952 (0.00%) 66 16,077 96

omnetpp 4,007 7,974 (3.92%) 2,977 4,484,946,004,759 8,446,032

parest 2,226 15,269 (0.29%) 6,729 65,117,646 992,272

x264s 398 21,321 (0.00%) 17,911 18,929,528 15,787

xalancbmk 5,444 4,902 (8.29%) 60 69,077,904,007 1,535,244

xz 151 1,900 (11.26%) 1,561 304,699,440,136 119

barnes 73 270 (0.74%) 0 495 248

cholesky 155 544 (0.74%) 0 4,835 4,205

�t 39 201 (0.00%) 0 421 31

fmm 115 562 (1.43%) 38 14,513 2,263

lu-cb 39 170 (0.00%) 0 241 38

lu-ncb 36 158 (0.00%) 0 228 36

ocean-cp 43 339 (0.00%) 0 732 106

ocean-ncp 35 303 (0.00%) 0 603 55

radiosity 205 619 (5.01%) 16 315,116 3,120

radix 30 170 (0.00%) 0 239 22

raytrace 143 659 (0.91%) 90 2,450 4,500

water-nsquared 42 239 (0.00%) 0 434 49

water-spatial 42 252 (0.00%) 0 437 55

Making PCCE and PCC Globally Distinguishable. To
have a fair comparison, we extend the original PCCE scheme,
which only generates CCIDs that are locally distinguishable.
Instead, we encode the original PCCE encoded value with
a call graph node ID unique to each function. Such a call
graph node ID is known at LLVM transformation passes.
However, because both the PCCE encoded value and call
graph node ID are 64-bit values, we need to combine the two
values into one 64-bit integer, using a hash function. To en-
sure global distinguishability, collision detection is performed
at the runtime by inserting the values into an unordered,
hashed set. We use the hash function from the C++ boost
library to combine the original encoded value and node ID.
For PCC, the call_site_ID used in the encoding function

is randomized for each call site. However, PCC su�ers the
same limitations as PCCE. PCC cannot guarantee global
distinguishability unless collision detection is performed on
the encoded values. We use the same implementation from
PCCE to detect collision of PCC encoded values.

5.1 Instrumentation Overhead on Execution Time

We start by evaluating the instrumentation overhead on the
execution time of SPEC CPU 2017 and Splash-3. In this ex-
periment, we only add and remove the edge weight at each
entry and exit of a function (for PCCE and DCCE — for PCC,
we use the encoding function with V=1), but do not output
the encoding results to any variable. This is to evaluate the
base overhead of each encoding scheme without the impact
of encoding. Figure 8 shows this instrumentation overhead.
Among the three schemes, PCC incurs the highest overheads,
up to 184% for radiosity, and 55.1% on average across all

Table 5. Analysis and instrumentation cost (shown as
minutes:seconds) for DCCE, broken down into various
components. We only show the cost for benchmarks with
more than 1,000 call paths (see Table 4). Other benchmarks
each take no more than 5 seconds in total.

Benchmark
CG Extract.

& PTA

CC Analysis

& Gen.

Bitcode

Inst.

Binary

Gen.
Total

leela 00:00.7 00:00.1 00:01.6 00:00.2 00:02.6

namd 00:04.4 00:00.1 00:25.6 00:01.0 00:31.1

omnetpp 05:55.7 00:28.9 12:30.4 00:02.3 18:57.3

parest 02:40.7 00:02.1 07:20.9 00:03.2 10:06.9

x264 00:23.5 00:00.9 00:52.6 00:00.8 01:17.8

xalancbmk 02:39.9 00:02.1 20:42.1 00:05.7 23:29.8

xz 00:01.3 00:03.9 00:03.5 00:00.2 00:08.9

cholesky 00:00.5 00:00.1 00:00.7 00:00.1 00:01.4

fmm 00:00.3 00:00.1 00:00.4 00:00.1 00:00.9

radiosity 00:00.5 00:00.1 00:00.7 00:00.1 00:01.4

raytrace 00:00.9 00:00.1 00:01.2 00:00.1 00:02.3

programs. Meanwhile, DCCE and PCCE have similar over-
heads (42.6% and 41.4% on average, respectively), and PCC
incurs 9-10% time overheads than DCCE and PCCE.

5.2 Analysis and Instrumentation Cost

We collect the analysis and instrumentation cost for DCCE
using the time command to measure the wall time of each
step of the static phase. We show the time cost in Table 5. For
most applications in SPEC CPU 2017 and Splash-3, the entire
analysis and instrumentation process is completed within
10 seconds. Only three applications (parest, omnetpp, and
xalancbmk) take more than 10 minutes to complete the en-
tire process, most of which is spent on (1) call graph (CG)
extraction and point-to analysis (PTA) using SVF, and (2)
instrumenting the LLVM bitcode to inject instructions for
adding the edge weights. The aforementioned three work-
loads have the highest static-time cost due to having some of
the largest numbers of edges in their call graphs. Other costs
such as the cost for Calling Context Analysis for assigning
the edge weight to each pair of caller and callee (cf. §3) is
insigni�cant; e.g., omnetpp has the highest cost with 28.9
seconds to assign the edge weights for the entire call graph.

Not shown here, the analysis and instrumentation of PCCE
incur a similar cost as DCCE, due to the same process of call
graph extraction, point-to-analysis, and calling context anal-
ysis. For PCC, there is no time spent on such components
because the assignment of edge weights does not rely on the
call graph. The only static-time cost for PCC is the instru-
mentation of the LLVM bitcode.

5.3 Memory Overhead

DCCE incur negligible memory overhead with 1.7 MB (1%)
and 1.8 MB (8%) for SPEC CPU 2017 and Splash-3, respec-
tively, on average because it only allocates one CCID variable

8

Enhancing Program Analysis with Deterministic Distinguishable Calling Context CC ’25, March 1–2, 2025, Las Vegas, NV, USA

1.41

1.55
1.43

0

0.5

1

1.5

2

2.5

3

PCCE PCC DCCE

Figure 8. Execution time of SPEC CPU 2017 and Splash-3, with the instrumentation of adding and removing the edge weights
encoded with PCCE, PCC, and DCCE, normalized to the native execution without any instrumentation. Lower is better.

def ThreadA() {

…
MatMul(...);

…
}

def ThreadB() {

Barrier();
MatMul(…);

Barrier();
}

def MatMul() {

Barrier();
// MatMul implementation

Barrier();
}

// ECC = {id}
def Barrier() {
ccid = getCCID()
if (ECC.contains(CCID) // if ccid == id

return; // Skip

// Barrier implementation

}

Figure 9. Barrier Elision example. id is a pro�led CCID of
the call path reaching Barrier from ThreadB

arr[0-15]

Record

Invariant

secret

if (idx < 16){

return arr[idx]

}

Whitelist

(CCID, Addr, PC)

if (illegal_access){

 raise Exception

}

Not Observed

Write

observed

accesses
Query

Legal Access

Illegal Access

Observed

Profile time1

Check every access

against Whitelist,

raise Exception if

violation

Production time2

Figure 10. Overview of WHISTLE [23].

per thread. PCCE is comparable, consuming 3.86MB (2%) and
2 MB (9%) more memory for SPEC CPU 2017 and Splash-3,
respectively, on average.

6 Client Tools

We use 2 clients to evaluate the encoding schemes:
Barrier Elision [11] aims to eliminate unnecessary bar-

rier operations in parallel programs. Figure 9 shows an exam-
ple. In this example, ThreadB calls a function Barrier before
and after a function MatMul, but it is redundant because

MatMul itself will call Barrier. Redundant barriers are com-
monly due to developers’ conservatism and can negatively
impact the application’s performance. At pro�le time, the
tool performs data race detection, and collects a set of Eligible
Candidate Contexts (ECC) which contains data-race-free con-
texts. The ECC is queried in production runs, during which
the barrier operation is skipped if the current CCID at the
barrier call is in ECC. Distinguishable CCIDs help the tool
con�dently use the encoded values in ECC without decoding
to disambiguate 2 equal CCID values.

WHISTLE [23] provides protection against software and
hardware memory safety violations. Figure 10 shows an
overview. WHISTLE �rst pro�les programs in attack-free
runs. It whitelists context-sensitive memory access: which
instruction (PC) accesses which data (Addr) and under which
context (CCID). These accesses are considered legitimate. Af-
ter pro�ling, WHISTLE starts monitoring all memory access,
checking for violation: if a tuple (CCID, Addr, PC) is not in
the whitelist, such access is illegal and an exception will be
raised. The bene�t of CCIDs that are globally distinguishable
is similar to that in case of Barrier Elision.

6.1 Impact on Barrier Elision

Table 6 shows the normalized execution time of Barrier Eli-
sion with each application in SPEC CPU 2017 and Splash-3,
and the geometric mean (geomean). Overall, DCCE does not
incur more overheads. Because Barrier Elision only requires
reading CCIDs at thread creation (pthread_create), barrier
(pthread_barrier_wait), and use of conditional variables
(pthread_cond_wait and pthread_cond_broadcast), the
overheads of extraction and collision detection of CCIDs
are marginal. For SPEC CPU 2017, both PCCE and PCC
are sightly slower than DCCE slower (3% and 6%, respec-
tively). For Splash-3, PCCE is a bit faster (1%) while PCC is
marginally worse (2%) than DCCE.

As an interesting data point, DrCCTProf [51] incurs signif-
icant overheads, up to 17×, highlighting the expensiveness
of the stack shadowing approach. Such a high cost is due to
dynamically computing and assigning CCIDs to the current

9

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

Table 6. Execution time of SPEC CPU 2017 (top) and Splash-
3 (bottom) with BarrierElision, encoded with PCCE, PCC,
and DCCE, normalized to native execution without any in-
strumentation. Smaller is better. For PCCE and PCC, we
separately show the overhead of collision detection (+CD).

Benchmark PCCE+CD PCC+CD DCCE

lbm 1.252+0.003 1.253+0.012 1.261
leela 1.722+0.000 1.785+0.000 1.772
mcf 2.009+0.000 2.023+0.003 1.999
namd 1.824+0.000 1.829+0.006 1.818
omnetpp 1.482+0.000 1.900+0.000 1.395
parest 2.227+0.000 2.254+0.000 2.195
x264 1.964+0.009 1.985+0.023 1.967
xalancbmk 1.690+0.017 1.715+0.000 1.660
xz 1.623+0.000 1.626+0.000 1.638

geomean 1.732+0.002 1.798+0.003 1.722

barnes 1.391+0.018 1.626+0.008 1.562
cholesky 1.000+0.143 1.036+0.007 1.000
�t 1.019+0.000 1.093+0.000 1.089
fmm 1.000+0.001 1.016+0.000 1.060
lu-cb 1.185+0.019 1.191+0.000 1.181
lu-ncb 1.121+0.000 1.148+0.000 1.122
ocean-cp 1.003+0.002 1.001+0.001 1.001
ocean-ncp 1.002+0.000 1.003+0.004 1.001
radiosity 1.643+0.000 1.908+0.013 1.831
radix 1.045+0.000 1.065+0.001 1.066
raytrace 1.359+0.000 1.369+0.000 1.352
water-nsquared 1.150+0.000 1.184+0.000 1.172
water-spatial 1.095+0.006 1.084+0.001 1.087

geomean 1.141+0.014 1.186+0.006 1.174

context and maintaining a calling context tree. Furthermore,
the analysis with DCCE did not generate incorrect results.

6.2 Impact on WHISTLE

Table 7 shows the normalized execution time of WHISTLE
with each application in SPEC CPU 2017 and Splash-3, and
the geometric mean (geomean). For WHISTLE, we inject the
code for reading CCIDs into every function to check memory
access against the respective calling contexts recorded during
pro�ling. If we compare the base overhead of PCCE and PCC,
without the consideration of collision detection, DCCE is
on par with PCCE while PCC is slightly worse. However,
if we consider the cost of collision detection in order to
make PCCE and PCC globally distinguishable, the overhead
becomes quite signi�cant. For SPEC CPU 2017, PCCE is
50% slower than DCCE, and PCC is 45% slower than DCCE.
For Splash-3, both PCCE and PCC at least incur 2× more
overheads than DCCE. Especially for applications which
perform a large amount of function calls, such as barnes
and radiosity in Splash-3, the overheads can be up to 42×.

7 Related Work

Stack walking. The straightforward method to provide call-
ing context is by walking the call stack, unwinding func-
tion frames using either compiler-recorded information (e.g.,
libunwind [26]) or results from binary analysis (e.g., Val-
grind [33], HPCToolkit [1]). This technique does not require

Table 7. Execution time of SPEC CPU 2017 (top) and Splash-
3 (bottom) with WHISTLE, encoded with PCCE, PCC, and
DCCE, normalized to native execution without any instru-
mentation. Smaller is better. For PCCE and PCC, we sepa-
rately show the overhead of collision detection (+CD).

Benchmark PCCE+CD PCC+CD DCCE

lbm 1.258+0.000 1.254+0.000 1.253
leela 1.885+0.598 1.871+0.499 1.875
mcf 2.283+1.495 2.201+1.190 2.229
namd 1.837+0.067 1.835+0.043 1.836
omnetpp 1.782+1.142 2.121+0.974 1.644
parest 2.263+0.142 2.287+0.137 2.218
x264 2.168+1.021 2.128+0.530 2.122
xalancbmk 1.873+0.889 1.888+0.647 1.799
xz 1.633+0.041 1.629+0.043 1.632

geomean 1.860+0.503 1.885+0.379 1.819

barnes 1.726+23.642 1.836+23.151 1.800
cholesky 1.036+0.035 1.018+0.053 1.054
�t 1.046+0.572 1.102+0.226 1.110
fmm 1.012+0.585 1.119+0.576 1.018
lu-cb 1.251+3.532 1.197+2.684 1.190
lu-ncb 1.170+2.790 1.139+2.394 1.123
ocean-cp 1.000+0.005 1.000+0.000 1.002
ocean-ncp 1.001+0.000 1.000+0.000 1.002
radiosity 2.352+42.459 2.374+37.666 2.356
radix 1.125+2.314 1.109+2.370 1.113
raytrace 1.546+6.637 1.534+6.178 1.528
water-nsquared 1.256+2.058 1.256+1.992 1.231
water-spatial 1.110+0.156 1.130+0.182 1.103

geomean 1.236+2.127 1.249+1.957 1.235

instrumentation at each call site. Hence, it adds no execu-
tion overhead except when calling context is needed (e.g.,
a bug or crash at run time [37]). Walking the stack is time-
consuming and thus is only suitable for clients who rarely
need to know the context such as a bug-reporting system, un-
like any context-sensitive analyses which frequently require
calling context information.
Stack shadowing. An alternative to stack walking is by

constructing a calling context tree (CCT). The tree represents
the dynamic call path and is suitable for �ne-grained call
path pro�lers such as CCTLib [12], DrCCTProf [51], Dead-
Spy [13], Runtime Value Numbering [49], RedSpy [48], and
LoadSpy [42]. Combining call stack unwinding and stack
shadowing yields hybrid call-path collection [19, 28]. As
mentioned earlier in §2, dynamic path pro�lers implicitly as-
sume an edge weight of one. DCCE can be adapted by these
works to make the calling context deterministic and distin-
guishable. The weights computed by DCCE can be packaged
as a library that can be queried at run time. However, this
approach su�er from huge execution time overheads [12, 51].

Calling context pro�ling. There is a large body of work
relying on calling contexts pro�ling for various software
engineering tasks [5, 7, 32, 40, 46, 50, 51, 53, 54]. Ausiello
et. al. introduce k-calling context forest and provide perfor-
mance metrics for paths of length at most k [5]. Zhuang
et. al. present an adaptive bursting technique to build accu-
rate calling context trees at run time [54]. Valence leverages
the compiler to use shorter encodings for hot paths and

10

Enhancing Program Analysis with Deterministic Distinguishable Calling Context CC ’25, March 1–2, 2025, Las Vegas, NV, USA

longer encodings for infrequent paths to reduce the encod-
ing size [53]. DCCE complements these works by cheaply
encoding a unique identi�er for each calling context.

Path pro�ling. Paths and calling contexts are orthogonal:
paths provide intraprocedural control �ow while calling con-
texts provide interprocedural control �ow. Paths are much
cheaper than calling context to compute. There is a line of
work in path pro�ling [4, 6, 19, 20, 32, 46]. DCCE comple-
ments works in path pro�ling and can be combined in a
hybrid approach similar to Melski and Reps [30].

8 Conclusion

This paper presents DCCE, a new calling context encoding
scheme. Our evaluation with two real clients shows that
DCCE incurs negligible additional space overhead and re-
duces time overhead compared to other state-of-the-art en-
coding schemes (up to 2.1× and 50%, for Splash-3 and SPEC
CPU 2017, respectively) while providing the bene�ts of deter-
minism and global distinguishability of the encoded values.

Acknowledgment

We thank the anonymous reviewers for their valuable feed-
back in improving this paper. This work is supported by NSF
CNS-2107010.

References
[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,

Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. 2010.

HPCToolkit: Tools for performance analysis of optimized parallel pro-

grams. Concurrency and Computation: Practice and Experience 22, 6

(2010), 685–701.

[2] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and

Abdullah Muzahid. 2017. Syncperf: Categorizing, detecting, and di-

agnosing synchronization performance bugs. In Proceedings of the

Twelfth European Conference on Computer Systems. 298–313.

[3] Lars Ole Andersen. 1994. Program analysis and specialization for the

C programming language. Ph. D. Dissertation. DIKU, University of

Copenhagen.

[4] Taweesup Apiwattanapong and Mary Jean Harrold. 2002. Selective

path pro�ling. In Proceedings of the 2002 ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering

(Charleston, South Carolina, USA) (PASTE ’02). 35–42. h�ps://doi.org/

10.1145/586094.586104

[5] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella

Firmani. 2012. k-Calling context pro�ling. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems Lan-

guages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). 867–878.

h�ps://doi.org/10.1145/2384616.2384679

[6] Thomas Ball and James R. Larus. 1996. E�cient path pro�ling. In

Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO 29. IEEE, 46–57.

[7] Andrew R. Bernat and Barton P. Miller. 2007. Incremental call-path

pro�ling. Concurrency and Computation: Practice and Experience 19,

11 (2007), 1533–1547. h�ps://doi.org/10.1002/cpe.1125

[8] Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. 2010. Bread-

crumbs: e�cient context sensitivity for dynamic bug detection analy-

ses. In Proceedings of the 31st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Toronto, Ontario, Canada)

(PLDI ’10). 13–24. h�ps://doi.org/10.1145/1806596.1806599
[9] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic calling

context. In Proceedings of the 22nd Annual ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages and Applications

(Montreal, Quebec, Canada) (OOPSLA ’07). 97–112. h�ps://doi.org/10.

1145/1297027.1297035

[10] Pietro Borrello, Andrea Fioraldi, Daniele Cono D’Elia, Davide

Balzarotti, Leonardo Querzoni, and Cristiano Giu�rida. 2024. Pre-

dictive Context-sensitive Fuzzing. In NDSS.

[11] Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik Sen, John

Mellor-Crummey, and Costin Iancu. 2015. Barrier elision for pro-

duction parallel programs. In Proceedings of the 20th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (San

Francisco, CA, USA) (PPoPP 2015). 109–119. h�ps://doi.org/10.1145/

2688500.2688502

[12] Milind Chabbi, Xu Liu, and John Mellor-Crummey. 2014. Call paths for

pin tools. In Proceedings of Annual IEEE/ACM International Symposium

on Code Generation and Optimization. 76–86.

[13] Milind Chabbi and JohnMellor-Crummey. 2012. Deadspy: a tool to pin-

point program ine�ciencies. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization. 124–134.

[14] Monika Chandrasekaran, Anca Ralescu, David Kapp, and Temesgen

Kebede. 2021. Malware Detection using the Context of API Calls. In

NAECON 2021 - IEEE National Aerospace and Electronics Conference.

92–97. h�ps://doi.org/10.1109/NAECON49338.2021.9696310

[15] Peng Chen and Hao Chen. 2018. Angora: E�cient Fuzzing by Prin-

cipled Search. In 2018 IEEE Symposium on Security and Privacy (SP).

711–725. h�ps://doi.org/10.1109/SP.2018.00046

[16] Long Fei and Samuel P. Midki�. 2006. Artemis: practical runtime

monitoring of applications for execution anomalies. In Proceedings of

the 27th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Ottawa, Ontario, Canada) (PLDI ’06). 84–95. h�ps:

//doi.org/10.1145/1133981.1133992

[17] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee,

andWeibo Gong. 2003. Anomaly detection using call stack information.

In 2003 Symposium on Security and Privacy, 2003. IEEE, 62–75.

[18] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain,

and Jan Vitek. 2020. Contextual dispatch for function specialization.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),

1–24.

[19] Todd Gamblin, Martin Schulz, Bronis R de Supinski, Felix Wolf,

Brian JN Wylie, et al. 2011. Reconciling sampling and direct instru-

mentation for unintrusive call-path pro�ling of MPI programs. In 2011

IEEE International Parallel & Distributed Processing Symposium. IEEE,

640–651.

[20] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit Roy,

Hany E. Ramadan, Donald E. Porter, David L. Chen, and Emmett

Witchel. 2007. Improved error reporting for software that uses black-

box components. In Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation (San Diego,

California, USA) (PLDI ’07). 101–111. h�ps://doi.org/10.1145/1250734.

1250747

[21] Kim Hazelwood and David Grove. 2003. Adaptive online context-

sensitive inlining. In International Symposium on Code Generation and

Optimization, 2003. CGO 2003. 253–264. h�ps://doi.org/10.1109/CGO.

2003.1191550

[22] Chung Hwan Kim, Junghwan Rhee, Hui Zhang, Nipun Arora, Guofei

Jiang, Xiangyu Zhang, and Dongyan Xu. 2014. IntroPerf: transpar-

ent context-sensitive multi-layer performance inference using system

stack traces. In The 2014 ACM International Conference on Measurement

and Modeling of Computer Systems (Austin, Texas, USA) (SIGMETRICS

’14). 235–247. h�ps://doi.org/10.1145/2591971.2592008

[23] Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Chia-

Che Tsai, Abdullah Muzahid, and Eun Jung Kim. 2022. WHISTLE: CPU

11

https://doi.org/10.1145/586094.586104
https://doi.org/10.1145/586094.586104
https://doi.org/10.1145/2384616.2384679
https://doi.org/10.1002/cpe.1125
https://doi.org/10.1145/1806596.1806599
https://doi.org/10.1145/1297027.1297035
https://doi.org/10.1145/1297027.1297035
https://doi.org/10.1145/2688500.2688502
https://doi.org/10.1145/2688500.2688502
https://doi.org/10.1109/NAECON49338.2021.9696310
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/1133981.1133992
https://doi.org/10.1145/1133981.1133992
https://doi.org/10.1145/1250734.1250747
https://doi.org/10.1145/1250734.1250747
https://doi.org/10.1109/CGO.2003.1191550
https://doi.org/10.1109/CGO.2003.1191550
https://doi.org/10.1145/2591971.2592008

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Sungkeun Kim, Khanh Nguyen, Chia-Che Tsai, Jaewoo Lee, Abdullah Muzahid, and Eun Jung Kim

Abstractions for Hardware and Software Memory Safety Invariants.

IEEE Trans. Comput. (2022).

[24] James C. King. 1976. Symbolic execution and program testing. Com-

mun. ACM 19, 7 (jul 1976), 385–394. h�ps://doi.org/10.1145/360248.

360252

[25] Jianjun Li, Zhenjiang Wang, Chenggang Wu, Wei-Chung Hsu, and

Di Xu. 2014. Dynamic and adaptive calling context encoding. In

Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization. 120–131.

[26] libunwind. 2022. h�ps://www.nongnu.org/libunwind

[27] Bozhen Liu and Je� Huang. 2022. SHARP: fast incremental context-

sensitive pointer analysis for Java. Proc. ACM Program. Lang. 6, OOP-

SLA1, Article 88 (apr 2022), 28 pages. h�ps://doi.org/10.1145/3527332

[28] Xu Liu and John Mellor-Crummey. 2011. Pinpointing data locality

problems using data-centric analysis. In International Symposium on

Code Generation and Optimization (CGO 2011). IEEE, 171–180.

[29] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi

Javanmard, Kathryn S. McKinley, and Colin Ra�el. 2020. Learning-

based memory allocation for C++ server workloads. In Proceedings of

the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems. 541–556.

[30] David Melski and Thomas W. Reps. 1999. Interprocedural Path Pro-

�ling. In Proceedings of the 8th International Conference on Compiler

Construction (CC ’99). Springer-Verlag, Berlin, Heidelberg, 47–62.

[31] Shachee Mishra and Michalis Polychronakis. 2020. Sa�re: Context-

sensitive Function Specialization against Code Reuse Attacks. In 2020

IEEE European Symposium on Security and Privacy (EuroS&P). 17–33.

h�ps://doi.org/10.1109/EuroSP48549.2020.00010

[32] Todd Mytkowicz, Devin Coughlin, and Amer Diwan. 2009. Inferred

call path pro�ling. In Proceedings of the 24th ACM SIGPLAN Conference

on Object Oriented Programming Systems Languages and Applications

(Orlando, Florida, USA) (OOPSLA ’09). 175–190. h�ps://doi.org/10.

1145/1640089.1640102

[33] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework

for heavyweight dynamic binary instrumentation. In Proceedings of

the 28th ACM SIGPLAN Conference on Programming Language Design

and Implementation (San Diego, California, USA) (PLDI ’07). 89–100.

h�ps://doi.org/10.1145/1250734.1250746

[34] Flemming Nielson, Hanne Nielson, and Chris Hankin. 1999. Principles

of Program Analysis. springer. h�ps://doi.org/10.1007/978-3-662-

03811-6

[35] Gabriel Poesia and Fernando Magno Quintão Pereira. 2020. Dynamic

dispatch of context-sensitive optimizations. Proceedings of the ACM

on Programming Languages 4, OOPSLA (2020), 1–28.

[36] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.

2016. Splash-3: A properly synchronized benchmark suite for contem-

porary research. In 2016 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 101–111.

[37] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to

Detect Unde�ned Value Errors with Bit-Precision. In 2005 USENIX

Annual Technical Conference (USENIX ATC 05). USENIX Association,

Anaheim, CA. h�ps://www.usenix.org/conference/2005-usenix-

annual-technical-conference/using-valgrind-detect-undefined-

value-errors-bit

[38] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. 2015. Unearthing

stealthy program attacks buried in extremely long execution paths.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. 401–413.

[39] SPEC2017. 2017. SPEC releases major new CPU benchmark suite.

h�ps://www.spec.org/cpu2017/press/release.html.

[40] J. M. Spivey. 2004. Fast, accurate call graph pro�ling. Softw. Pract.

Exper. 34, 3 (mar 2004), 249–264. h�ps://doi.org/10.1002/spe.562
[41] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016.

Optimizing R language execution via aggressive speculation. In Pro-

ceedings of the 12th Symposium on Dynamic Languages (Amsterdam,

Netherlands) (DLS 2016). 84–95. h�ps://doi.org/10.1145/2989225.

2989236

[42] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu.

2019. Redundant loads: A software ine�ciency indicator. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE).

IEEE, 982–993.

[43] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-�ow

analysis in LLVM. In Proceedings of the 25th international conference

on compiler construction. ACM, 265–266.

[44] WilliamN. Sumner, Yunhui Zheng, DasarathWeeratunge, and Xiangyu

Zhang. 2011. Precise calling context encoding. IEEE Transactions on

Software Engineering 38, 5 (2011), 1160–1177.

[45] SVFGit. 2022. Static Value-Flow Analysis Framework. h�ps://github.

com/SVF-tools/SVF

[46] Kapil Vaswani, Aditya V. Nori, and Trishul M. Chilimbi. 2007. Pref-

erential path pro�ling: compactly numbering interesting paths. In

Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (Nice, France) (POPL ’07).

351–362. h�ps://doi.org/10.1145/1190216.1190268

[47] Ben Weidermann. 2007. Know your place: Selectively executing state-

ments based on context. Technical Report. University of Texas at Austin.

[48] ShashaWen, Milind Chabbi, and Xu Liu. 2017. Redspy: Exploring value

locality in software. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and

Operating Systems. 47–61.

[49] Shasha Wen, Xu Liu, and Milind Chabbi. 2015. Runtime value num-

bering: A pro�ling technique to pinpoint redundant computations. In

2015 International Conference on Parallel Architecture and Compilation

(PACT). IEEE, 254–265.

[50] Qiang Zeng, Junghwan Rhee, Hui Zhang, Nipun Arora, Guofei Jiang,

and Peng Liu. 2014. DeltaPath: Precise and Scalable Calling Context

Encoding. In Proceedings of Annual IEEE/ACM International Symposium

on Code Generation and Optimization (Orlando, FL, USA) (CGO ’14).

109–119. h�ps://doi.org/10.1145/2544137.2544150

[51] Qidong Zhao, Xu Liu, and Milind Chabbi. 2020. DrCCTProf: A �ne-

grained call path pro�ler for ARM-based clusters. In SC20: International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 1–16.

[52] Keren Zhou, Jonathon Anderson, Xiaozhu Meng, and John Mellor-

Crummey. 2022. Low overhead and context sensitive pro�ling of

GPU-accelerated applications. In Proceedings of the 36th ACM Interna-

tional Conference on Supercomputing (Virtual Event) (ICS ’22). Article

1, 13 pages. h�ps://doi.org/10.1145/3524059.3532388

[53] Tong Zhou, Michael R. Jantz, Prasad A Kulkarni, Kshitij A. Doshi, and

Vivek Sarkar. 2019. Valence: variable length calling context encod-

ing. In Proceedings of the 28th International Conference on Compiler

Construction. 147–158.

[54] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok

Choi. 2006. Accurate, e�cient, and adaptive calling context pro�ling.

In Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Ottawa, Ontario, Canada) (PLDI

’06). 263–271. h�ps://doi.org/10.1145/1133981.1134012

Received 2024-11-13; accepted 2024-12-21

12

https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://www.nongnu.org/libunwind
https://doi.org/10.1145/3527332
https://doi.org/10.1109/EuroSP48549.2020.00010
https://doi.org/10.1145/1640089.1640102
https://doi.org/10.1145/1640089.1640102
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.spec.org/cpu2017/press/release.html
https://doi.org/10.1002/spe.562
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/2989225.2989236
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF
https://doi.org/10.1145/1190216.1190268
https://doi.org/10.1145/2544137.2544150
https://doi.org/10.1145/3524059.3532388
https://doi.org/10.1145/1133981.1134012

	Abstract
	1 Introduction
	2 Existing Encoding Schemes
	2.1 Precise Calling Context Encoding (PCCE)
	2.2 Probabilistic Calling Context (PCC)
	2.3 Dynamic Call Path Profiling

	3 Deterministic/Distinguishable Calling Context Encoding (DCCE)
	3.1 Computing Edge Weights
	3.2 Proof of Global Distinguishability of DCCE
	3.3 Decoding Algorithm
	3.4 Recursive Calls
	3.5 CCID Overflow
	3.6 Indirect Calls
	3.7 Dynamically Linked Library (DLL)

	4 Implementation
	5 Evaluations
	5.1 Instrumentation Overhead on Execution Time
	5.2 Analysis and Instrumentation Cost
	5.3 Memory Overhead

	6 Client Tools
	6.1 Impact on Barrier Elision
	6.2 Impact on WHISTLE

	7 Related Work
	8 Conclusion
	References

