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Abstract—With the widespread adoption of Deep Learning
(DL) models, the demand for DL accelerator hardware has
risen. On top of that, DL models are becoming massive in
size. To accommodate those models, multi-chip-module (MCM)
emerges as an effective approach for implementing large-scale
DL accelerators. While MCMs have shown promising results
for DL inference, its potential for Deep Learning Training
remains largely unexplored. Current approaches fail to fully
utilize available links in a mesh interconnection network of
an MCM accelerator. To address this issue, we propose two
novel AllReduce algorithms for mesh-based MCM accelerators
- RingBiOdd and Three Tree Overlap (TTO). RingBiOdd is a
ring-based algorithm that enhances the bandwidth of AllReduce
by creating two unidirectional rings using bidirectional intercon-
nects. On the other hand, TTO is a tree-based algorithm that
improves AllReduce performance by overlapping data chunks.
TTO constructs three topology-aware disjoint trees and runs
different steps of the AllReduce operation in parallel. We present
a detailed design and implementation of the proposed approaches.
Our experimental results over seven DL models indicate that
RingBiOdd achieves 50% and 8% training time reduction over
unidirectional Ring AllReduce and MultiTree. Furthermore, TTO
demonstrates 33% and 29% training time reduction over state-of-
the-art MultiTree and Bidirectional Ring AllReduce, respectively.

I. INTRODUCTION

The widespread adoption of Deep Neural Networks (DNNs)

across various domains, such as image recognition [27], [41],

[65], [69], language modeling [68], [76], autonomous vehicles

[6], [22], and audio synthesis [75], has led to a focus on

enhancing their accuracy. A common strategy involves increas-

ing the model size, resulting in state-of-the-art (SOTA) DNN

models [8], [20], [27], [45], [57], [71], [76] with trillions of

parameters and megabytes of storage requirements. However,

this expansion poses a challenge as the model size surpasses a

single chip’s computation and storage capacity. As a solution,

chiplet-based architectures [4], [32], [62] have emerged to

effectively scale up the system.

In recent times, the integration of multi-chip-modules

(MCMs) has become prevalent in the construction of large-

scale CPUs [9], [36], [38] and GPUs [3], [83]. This approach

offers reduced costs through the utilization of smaller chiplets

§Both authors contributed equally to this work.

and the availability of high-speed, high-bandwidth signaling

[81], enabling chiplet-based systems using MCMs to achieve

superior performance at a lower cost compared to large

monolithic chip designs. Moreover, the flexibility to adjust the

number of chiplets within a package allows for the straightfor-

ward design of systems of different scales without the need for

separate chip designs for each market segment. Consequently,

numerous studies have concentrated on applying MCMs to

enhance the performance of DNN inference tasks [4], [32],

[42], [49], [62]. However, the potential of MCMs for DNN

training remains largely unexplored to date.

The growing trend of employing larger models for DNN

training has led to widespread use of Data Parallelism [61],

[63], [86] in parallel and distributed training [5], [73]. To

enhance model accuracy, Stochastic Gradient Descent (SGD)

is commonly used as an optimization technique, requiring

collective communication between computing nodes. AllRe-

duce, an iterative algorithm, is widely adopted for this purpose

during training. However, as the number of nodes increases,

the data communicated by each node remains constant [21],

[85], resulting in increased overall communication. Conse-

quently, this creates an unfavorable computation and commu-

nication ratio, making AllReduce a bottleneck for large-scale

distributed training [47].

Numerous AllReduce algorithms have been proposed to

address the aforementioned challenge. Baidu Research intro-

duced the Ring AllReduce [18], [51], a straightforward and

bandwidth-efficient algorithm, which has been incorporated

into NVIDIA Collective Communication Library (NCCL)

[48] and Horovod [60]. Other well known AllReduce al-

gorithms are Bidirectional Ring AllReduce [34], Halving-

doubling (HDRM) [14] for BiGraphs and topology-aware tree-

based algorithm MultiTree [31].

Up until now, the existing algorithms have demonstrated

effectiveness in various topologies such as Torus, BiGraph [14]

and Hybrid cube-mesh [1]. However, in the context of MCM-

based architectures where chiplets are interconnected via on-

package links forming a mesh-like topology, the absence of

wrap-around links, as seen in Torus, limits the performance of

existing AllReduce algorithms. For instance, the Bidirectional
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Ring AllReduce, aimed at improving bandwidth and link

utilization in the Ring algorithm, cannot form bidirectional

rings in an odd-sized1 mesh due to the lack of a Hamiltonian

cycle [15]. So, the Bidirectional Ring AllReduce algorithm

is unavailable for such cases. Another tree-based algorithm

called Double Binary Tree (DBTree) [59], also implemented

in NCCL, forms two binary trees to maximize bandwidth

utilization. However, it lacks topology awareness, resulting in

sub optimal tree mapping within the physical topology. The

MultiTree algorithm forms a set of topology-aware trees to

maximize link utilization in any topology. However, the tree

heights increase significantly when the underlying topology

is mesh, leading to extra communication latency compared

to other topologies like torus. Overall, all existing algorithms

utilize only around 50% of the total links(more details in

section III-C), highlighting the need for novel algorithms

specifically tailored for mesh topology to achieve much higher

link utilization.

In this paper, we introduce two novel AllReduce algo-

rithms specifically designed for mesh topology. To address

the absence of a Hamiltonian cycle in an odd-sized mesh,

the first algorithm, RingBiOdd, forms two unidirectional rings

in the opposite directions among N − 1 chiplets2 instead

of N . Moreover, RingBiOdd optimizes communication for

the remaining chiplet such that both the ReduceScatter and

AllGather stages are completed in N − 1 hops, matching

the hop count of Bidirectional Ring AllReduce for even-sized

mesh. RingBiOdd can be easily integrated with popular DNN

collective communication libraries like NCCL and Horovod

which already use Bidirectional Ring AllReduce for even-sized

mesh [35]. As a result, RingBiOdd makes Bidirectional Ring

AllReduce a practical choice for any mesh topology.

The paper also proposes a tree-based algorithm, TTO, which

surpasses all existing algorithms, including RingBiOdd, in link

utilization, leading to improved performance. TTO utilizes

three topology-aware disjoint trees, overlapping multiple data

chunks3 to maximize link usage and achieve high speedup.

Building three disjoint trees requires running training in

N−1 chiplets within an N -chiplet system, increasing training

time. However, the significant performance improvement from

TTO’s AllReduce phase outweighs the extended computation

time in end-to-end training, making it an effective solution to

existing AllReduce algorithm challenges. Although TTO per-

forms superior to all other AllReduce algorithms, we propose

RingBiOdd to ensure Bidirectional Ring AllReduce’s appli-

cability for any mesh topology, considering the widespread

usage of the Ring AllReduce algorithm.

While our paper primarily analyzes the efficiency of Ring-

BiOdd and TTO within MCM-based systems, these algo-

rithms can be applied to any mesh-based systems requiring

AllReduce functionality. AllReduce is an essential primitive

used in parallel computing applications, including Scientific

1A mesh of size m× n is called odd-sized if both m and n are odd, else
it is even-sized.

2Throughout the paper, we use nodes and chiplets interchangeably.
3A chunk represents a portion of gradient for the collective.

Computing [2], [16], [29], [53], [55], [80], Graph Processing

[87], and Artificial Intelligence [48], [60]. An extensive five-

year profiling of HPC applications [54] showed that more

than 17% of operational time was spent in AllReduce com-

munication. Therefore, both proposed algorithms will improve

communication latency during AllReduce operations for any

system with mesh topology.

In summary, the contributions of this paper are as follows.

• We identify inefficiencies in the existing state-of-the-

art AllReduce algorithms in MCM-based systems, more

specifically mesh-based topologies.

• We propose RingBiOdd, a Bidirectional Ring AllRe-

duce algorithm for odd-sized mesh, which ensures that

Bidirectional Ring AllReduce can be applied to any

mesh topology, effectively doubling the bandwidth usage

and performance compared to widely used Unidirectional

Ring AllReduce.

• To further improve the performance by overlapping data

chunks using unused links, we propose a Tree-based

algorithm, TTO , which constructs three topology-aware

disjoint trees by running the training in N − 1 chiplets

in an N -chiplet system to perform ReduceScatter and

AllGather in parallel over multiple chunks.

• Our evaluation using synthetic data and SOTA DNN

models show that RingBiOdd achieves a 1.9× and 1.1×
communication speedup as well as 50% and 8% training

time reduction over unidirectional Ring AllReduce and

MultiTree, respectively. Furthermore, TTO demonstrates

a 1.6× and 1.4× speedup including 33% and 29%
training time reduction over MultiTree and Bidirectional

Ring AllReduce, respectively.

The rest of the paper is organized as follows: II and

III introduce the background and motivation, respectively.

IV and V present the two proposed AllReduce algorithms.

The methodology is described in VI. Results and further

discussions are outlined in VII and VIII, respectively followed

by more related work in IX. Finally, we conclude the paper

in X.

II. BACKGROUND

This section introduces the background of Data Parallel

Training for DNN, the AllReduce Algorithm and the MCM

architecture.

A. Data Parallel Training for Deep Learning Applications

DNN training iteratively adjusts neural network weights

and biases using backpropagation, computing gradients of the

loss function. It involves forward propagation, loss calculation,

backpropagation for gradients, and parameter updates via an

optimization algorithm like stochastic gradient descent. This

process is repeated for epochs or until convergence.

To scale and speed up training with abundant data, Data

Parallel Distributed Training across nodes is common [5]. For

that, data is first divided into mini-batches and distributed

among nodes. Then gradients are exchanged among the nodes

833
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Fig. 1: (a) An example of Ring AllReduce algorithm showcasing different levels of aggregation with varying color intensity.

Here top and bottom rows represent ReduceScatter and AllGather stages respectively. With four nodes in total, the total gradient

is divided into four parts, each indicated by a different color. (b) Ring ReduceScatter for 4 nodes in 1D mesh. Here, the color

of arrow denotes which part is transferred from a node.

to facilitate the effective training process in Data Parallel

Training.

B. AllReduce Algorithm

The AllReduce algorithm synchronizes gradients among

nodes in Data Parallel Distributed Computing. It consists of

two phases: ReduceScatter which aggregates gradients, and

AllGather which distributes them. There are many algorithms

proposed for this purpose such as Direct, Ring-based AllRe-

duce [18], Halving Doubling [14], MultiTree [31] and Double

Binary Tree Algorithm [59].

In Ring-based AllReduce (Figure 1(a)), a cyclic path is used

to visit each node exactly once and takes 2(N − 1) timesteps

for a topology with N nodes. To leverage bidirectional links in

an MCM architecture, the same ring in the opposite direction

can be used for another half of data [34]. This approach

doubles the performance by utilizing the full bandwidth of

ring.

The Ring-based AllReduce method can be extended to an

n×n mesh topology in a hierarchical fashion by splitting the

total gradient data into two halves and concurrently applying

AllReduce over both halves along the x and y dimensions

independently. Following ReduceScatter in the first dimension,

the second ReduceScatter begins in the opposite dimension

with 1/2n of total data for each half. However, due to the

absence of wrap-around links in each dimension of the mesh,

communication between the first and last nodes requires n−1
hops, leading to a significant performance degradation. In Fig-

ure 1, we illustrate the steps of the Ring AllReduce algorithm

in a 1D mesh with 4 nodes. Throughout this paper, we denote

this algorithm as Ring-2D.

In addition, tree-based algorithms like MultiTree [31] and

Double Binary Tree Algorithm [59] exist. MultiTree is a

topology-aware tree-based AllReduce algorithm that con-

structs N trees for an N -node system, ensuring no link

conflicts during AllReduce. It is a greedy algorithm applica-

ble to many interconnect topologies, generating ReduceScat-

ter schedules through bottom-up traversal of the trees and

AllGather schedules through top-down traversal. Another ap-

proach is the Double Binary Tree Algorithm [59], which forms

two binary trees to efficiently synchronize data.

C. Multi-Chip-Modules

MCMs are a promising approach in deep learning, en-

hancing performance and efficiency [62], [66]. They integrate

multiple chips on a single substrate, creating a tightly-coupled

and highly interconnected system [3], [36], enabling efficient

communication and parallel processing [88]. High-bandwidth

data exchange between chips minimizes communication bot-

tlenecks, reducing training times [62]. MCMs also offer

benefits like reduced costs and scalability [62], significantly

accelerating deep learning tasks.

III. MOTIVATION

In this section, we provide the motivation for our research

work by analyzing the feasibility of data parallelism in MCMs

and highlighting the limitations of existing AllReduce algo-

rithms for mesh networks.

A. Feasibility of Data Parallel Training in MCMs

As MCMs have not been explored for data parallel training

of DNN models, here we analyze the feasibility of data parallel

training for both small and large DNN models with current

MCM technologies. MCMs, primarily used for model paral-

lelism in inference, have seen recent advancements. Simba

[62] and Zimmer et al. [89] both present a 36-chiplet system

in a 6×6 mesh, while Tangram [17] has a 16×16 chip-engine,

where each engine similar to the Eyeriss [11] accelerator.

Despite challenges in increasing chiplet numbers, research

pushes boundaries: SPRINT [43] uses 64 chiplets with 64

Processing Elements(PEs) each, where each PE resembles

Simba, and SPACX [44] uses 32 chiplets with a vector MAC

width of 32. This progression suggests the imminent evolution

of larger MCMs with more PEs and MAC units.

Despite the new advancements of MCM-based design,

the scale of data parallel training for large DNN models
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in MCMs are limited due to the constrained memory and

processing capabilities of individual chiplets. As the size of

recent DNN models ranges from megabytes to gigabytes,

fitting the entire model into a single chiplet isn’t feasible. To

reduce the memory footprint of large models, different types

of technologies are increasingly adopted. For inference, 2-4

bit precision is common [77], while training often uses 8-

bit precision [67], [79], a drop from the usual 16bit or 32bit.

Leveraging sparsity also decrease memory in large DNNs [23],

and model compression techniques also help shrink model

sizes [26]. Network Pruning [25] and Deep Compression [24]

are two more compression methods capable of reducing the

size of the AlexNet model from its original 240 MB to 27 MB

(9x) and 6.9 MB (35x), respectively [33].

Although storing a full copy of a large DNN model into a

single chiplet is not feasible, smaller DNN models designed

for embedded systems and IoT devices can use MCMs for

data parallel training. The recent popularity of small DNN

models in embedded systems stems from meeting three critical

requirements: fast distributed data parallel training, fitting

conveniently within the memory of a single-chip for enhanced

power efficiency, and facilitating easy over-the-air updates.

SqueezeNet [33] is a compact DNN model that achieves a sim-

ilar Top-1 accuracy as AlexNet but with a significantly reduced

model size of 4.8 MB(50×) without any compression and

0.47 MB(510×) with Deep Compression compared to original

AlexNet model. Similar small-scale models like MobileNet

[30], MnasNet [72], and PROXYLESSNAS [10] typically

cover around 5 MB in weight size without compression.

These compact models find effective application in tasks like

character recognition [82] and semantic segmentation [50].

Using SPRINT’s model [43] with 32KiB weight buffer per PE

and 64 PEs per chiplet, a chiplet can store up to 1MB weights

surpassing the compressed model size of SqueezeNet. This

suggests that, MCMs can effectively facilitate data parallel

training of small DNN models.

Additionally, to address the challenge posed by large DNN

models, an alternative approach involves training them layer by

layer rather than storing the entire model in memory. Typically,

the weight size of the largest layers in DNN models ranges

from 576KB to 5MB, considering an 8-bit precision. With

each chiplet capable of accommodating up to 1MB of weights,

it’s viable for the largest layers in models like Transformer,

AlphaGoZero, and GoogLeNet to comfortably fit within a

single chiplet. Given the trend of increasing PE count in

MCMs, storing larger layers in a chiplet will be feasible,

highlighting the potential for data parallel training in MCMs

in near future.

B. Unavailability of Bidirectional Ring AllReduce for Odd-
sized mesh

To leverage bidirectional interconnects, Bidirectional Ring

AllReduce uses two unidirectional rings in opposite directions

for collective communication. As it effectively doubles the

bandwidth usage, Bidirectional Ring AllReduce is always

a better choice than Unidirectional Ring AllReduce when

bidirectional ring is available. The NVIDIA NCCL [48] library

provides a notable example of this approach, generating 4

and 6 unidirectional rings from the 2 and 3 bidirectional

rings available in DGX-1 systems [1] equipped with P100

and V100 GPUs, respectively [35]. The DGX-1 system’s GPU

connectivity is designed to get the benefits of Bidirectional

Ring AllReduce, which is a popular and widely used approach

due to its simplicity and efficiency.

However, forming a bidirectional ring is not trivial and it

depends on the underlying physical topology. For instance,

finding a bidirectional ring in topologies like Torus, which pos-

sess wrap-around links, is relatively straightforward. However,

in topologies such as mesh, where no wrap-around links are

available, locating a bidirectional ring is not always feasible.

The challenge in finding a bidirectional ring and identifying

a Hamiltonian cycle in a topology are similar. As in a odd-

sized mesh, there is no Hamiltonian cycle available [15],

it is impossible to form a bidirectional ring using all the

nodes. Given the widespread use of Ring AllReduce and the

increased bandwidth utilization offered by bidirectional rings

over unidirectional ones, it becomes imperative to devise a

Bidirectional Ring AllReduce solution specifically catering to

odd-sized mesh topologies, ensuring the effective application

of Bidirectional Ring AllReduce across all types of topologies.

C. Link Underutilization of Existing AllReduce Algorithms

TABLE I: Used Link Percentage for Different AllReduce Al-

gorithms in mesh Topology

Algorithm
Even-sized mesh Odd-sized mesh

Applicability Used Link
Percentage

Applicability Used Link
Percentage

Unidirectional
Ring

Easy 29% Easy 28%

Bidirectional
Ring

Easy 57% Inapplicable -

Ring-2D Hard 55% Hard 53%
DBTree Hard - Hard -
HDRM Inapplicable - Inapplicable -

MultiTree Easy 53% Easy 51%

Table I presents a comprehensive evaluation of different

AllReduce algorithms concerning their applicability to both

even and odd-sized mesh topologies. The default topologies

used for link usage computation are 8 × 8 for even-sized

mesh and 9 × 9 for odd-sized mesh, with similar trends

observed for larger and smaller topologies. Hierarchical Ring-

2D is found to be unsuitable for mesh due to the com-

plexities of forming a ring in each dimension and the la-

tency imposed by the slowest link, typically the connection

between two far-end nodes. Similarly, DBTree’s topology-

oblivious nature and poorly mapped trees in the physical

topology hinder its applicability. HDRM, designed solely for

Bigraph, is not suitable for mesh topologies. Unidirectional

ring AllReduce applies to all mesh configurations but exhibits

low link usage. Bidirectional Ring AllReduce offers increased

link usage; however, it is limited to even-sized mesh only.

MultiTree, while compatible with all topologies, still achieves

835

Authorized licensed use limited to: Samsung Electronics. Downloaded on March 10,2025 at 03:53:47 UTC from IEEE Xplore.  Restrictions apply. 



only around 50% link utilization. This limitation arises from

mesh’s lack of wrap-around connections like Torus, leading to

a higher number of timesteps required to construct all trees,

thereby degrading link usage. Consequently, the development

of an algorithm specifically tailored for mesh with higher link

utilization is of paramount importance.

IV. RINGBIODD : BIDIRECTIONAL RING ALLREDUCE FOR

ODD-SIZED MESH

In this section, we first discuss how to find a bidirectional

ring in an odd-sized mesh and then proceed to the algorithm

that generates the AllReduce schedules.

A. Forming a Bidirectional Ring for Odd-sized mesh

For odd-sized meshes, a bidirectional ring that includes

all nodes cannot be formed. To address this in an m × n
mesh where both m and n are odd, we exclude one node

and utilize mn − 1 nodes to create a bidirectional ring.

It is always possible to find a Hamiltonian cycle in linear

time in an m × n odd-sized mesh whose one corner node

has been excluded [39]. Figure 2 illustrates an example of

bidirectional ring formation in 3x3 and 3x5 meshes where a

corner is excluded(marked as yellow). We then schedule the

AllReduce process in parallel using two unidirectional rings

(marked as blue and red arrows). To transfer the data of the

excluded node to the nodes in the formed ring, we exploit any

two available bidirectional connections of the excluded node

(marked in purple in Figure 2) with its neighbors.

Fig. 2: Bidirectional ring formation for odd-sized mesh by

excluding one corner node. To schedule data of excluded node

for reduction and broadcast in both rings, purple links are used.

B. AllReduce Schedule for RingBiOdd

Since we are creating a ring with N−1 nodes in an N -node

system, we need to carefully schedule the ReduceScatter and

AllGather processes using the given Algorithm 1 to handle

data aggregation and broadcast from the excluded node. The

algorithm starts by forming a Hamiltonian cycle with all

the nodes excluding a corner node (Lines 1-2). Every node

within the network divides its gradient data into two halves,

corresponding to each direction in the bidirectional ring (Line

3). These halves are then further partitioned into (m×n− 1)
parts, representing the number of nodes in the ring (Line 4).

From timestep 1 to timestep m× n− 2, the excluded node

transmits its gradients to the adjacent neighbors using two

Algorithm 1 Finding AllReduce Schedule for Odd-sized mesh

Input: mesh topology of size m× n
Output: reduce scatter schedule, all gather schedule

1: G = {set of nodes in m× n} - {a corner node}
2: R = FormHamiltonianCycle(G)
3: Divide the data in each node into two halves, one for the rings

in each direction.
4: Divide each halve further into (mn−1) parts for AllReduce com-

munication.
� Timestep 1

5: Add connections from excluded node to two neighbors to
reduce scatter schedule and send one part to each neighbor.

� Timestep 2 to Timestep (mn− 1)
6: Add Bidirectional Ring ReduceScatter schedule for R to

reduce scatter schedule.
7: for timestep = 2, ...,mn− 1 do
8: Add connections from excluded node to two neighbors to

reduce scatter schedule and send rest of the parts.
9: end for

10: all gather schedule = Reverse(reduce scatter schedule)

bidirectional links(Line 5). Subsequently, the two neighbors

merge data from the excluded node and execute two simulta-

neous Ring AllReduce algorithms in opposite directions along

the Hamiltonian cycle, spanning from timestep 2 to timestep

m × n − 1(Lines 6-9). In this process, the neighbors of the

excluded node aggregate data from both the excluded node

itself and its own parent within the ring. All the other nodes

that are part of the ring follow the standard Bidirectional Ring

AllReduce algorithm during timestep 2 to timestep m×n−1.

The entire process is explained in Figure 3 with an example,

demonstrating the ReduceScatter process of RingBiOdd in a

3×3 mesh for a single direction. The AllGather schedule can

similarly be derived by reversing the order of data transfer

during ReduceScatter in the algorithm.

Fig. 3: The ReduceScatter steps using RingBiOdd in a 3× 3
mesh. Node indices are represented by numbers in circles, and

data part indices are shown in rectangles.

To begin, we establish a bidirectional ring comprising nodes

(1, 2, 3, 6, 5, 8, 7, 4). With 8 nodes in the ring, we split the

halves of data into 8 parts, i.e., N −1 parts, as opposed to the

traditional ring-based all reduce, which uses N parts for an

N -node system. In this scheme, node 8 serves as the merging

node, aggregating data from both its parent (node 5) and the
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excluded node (node 9) during the process.

The ReduceScatter proceeds as follows: At timestep 1, node

9 sends part 2 to node 8, and node 8 aggregates it. In timestep

2, the ring-based AllReduce starts, with node 8 transmitting

the aggregated part 2 from both node 5 and node 9 to node

7. Simultaneously, node 8 receives part 1 from nodes 5 and 9

and aggregates it. This continues for 8 timesteps, after which

each node in the ring possesses 1/8 of fully aggregated data.

For the AllGather stage, a similar ring-based broadcast takes

place, utilizing link 8 to 9 to retrieve all the aggregated parts

from node 8. This process also requires 8 timesteps. Hence, in

a total of 16 timesteps, we can complete AllReduce stages. In

comparison to the ring-based AllReduce for even-sized mesh,

our proposed algorithm finishes within 2N − 2 timesteps.

However, the amount of data transmitted in each timestep now

becomes D/(N − 1) instead of D/N , where D is the size of

data to be aggregated per node. For AllReduce in the opposite

direction, we follow the same procedure, but this time node 6

is used as the merging node.

V. TTO: THREE TREE ALLREDUCE

In this section, we introduce TTO, a tree-based AllReduce

algorithm that divides gradients into multiple chunks and

schedules their communication in a way that allows multiple

chunks to participate in AllReduce concurrently. To achieve

this overlapping, which requires thoughtful construction of

multiple trees for collective scheduling, we begin by discussing

the rationale behind chunk overlapping in a 1D mesh. Subse-

quently, we provide a detailed explanation of TTO.

A. Overlapping of Chunks in 1D mesh

Fig. 4: Tree-based AllReduce in a 1D mesh with 4 nodes,

where total 6 links remain unused.

Existing tree-based AllReduce algorithm builds large num-

ber of trees and suffers from significant link underutilization.

Figure 4 shows how trees are formed in a 1D mesh with

4 nodes using MultiTree algorithm. In this example, 4 trees

are created to enable AllReduce communication among the

nodes, with each tree aggregating D/4 data, where D is

the total data size. ReduceScatter(or AllGather) using 4 trees

takes 3 timesteps, keeping 6 links unused. To utilize the

unused links, we can split the data into multiple chunks and

run ReduceScatter operation of different chunks in parallel

with unused links. In the paper, by overlapping chunks, we

represent parallel reduction or broadcast of multiple chunks.
The issue with building 4 trees is that there is limited op-

portunity of increasing link utilization by overlapping multiple

chunks. Some links, like (4 → 3) and (1 → 2), are used

in multiple trees across all timesteps, leaving little room for

overlap. However, if we build only two trees(tree 1 and 4),

we can start overlapping between chunks. For example, when

chunk 1 finishes using link (4 → 3) and (1 → 2), chunk 2

can immediately start using these links. However, using two

trees increases the data sent by each tree to D/2, double that

of using 4 trees.

Fig. 5: The overlapping of 5 chunks in a 1D mesh with

4 nodes, where all the chunks use only tree 1 and tree 4

which results in using 2 timesteps for each data transfer. With

overlapping, 5 chunks can be finished within 14 timesteps

instead of 15 which use all the trees.

Figure 5 illustrates the overlapping of chunks in a 1D

mesh with 5 chunks. Using all trees, each chunk needs

3 timesteps to finish the ReduceScatter stage, totaling 15

timesteps for all 5 chunks. However, with only two trees,

overlapping becomes possible, and each step of the Re-

duceScatter stage takes 2 timesteps. As a result, chunk 1

finishes within 6 timesteps, which is 3 more than using all

trees. But, due to the availability of overlapping, chunk 2 can

start ReduceScatter at timestep 3 and finish within timestep

8, and the same process continues for all chunks. With this

approach, ReduceScatter can be finished within 14 timesteps

for all 5 chunks, which is less than when using all the trees.
In general, in an N -node system, with N chunks, Re-

duceScatter using all trees and two trees with corner nodes as

roots take the same amount of time. However, after that point,

overlapping becomes beneficial, reducing the reduce scatter

time for each chunk to �N/2�, instead of N − 1 when using

all trees. As the number of chunks is generally very high,

this overlapping approach provides a significant speedup over

using all trees. Additionally, all the links remain utilized across

the full AllReduce process, resulting in a significantly higher

link usage percentage compared to using all trees.
Although overlapping in 1D mesh provides significant per-

formance improvement, MCMs are generally 2D mesh. In a

2D mesh, a hierarchical AllReduce approach can be applied,
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performing ReduceScatter or AllGather in each dimension

with an overlapping approach. However, as overlapping in

1D mesh stores the data in the corner nodes, after the first

ReduceScatter of hierarchical AllReduce, all the chunks will

be stored in the edge nodes of the mesh. So, during the second

ReduceScatter, none of the interior links will be used, leading

to significant link underutilization.

To address this, we need an algorithm that can utilize

links in a 2D mesh and apply overlapping effectively. The

observations from the 1D mesh provide following insights

regarding tree formation where chunks can be overlapped:

• To perfectly overlap the chunks, all trees should be

disjoint. If there is a common link between trees, it can’t

be utilized simultaneously, hindering overlapping. For

instance, in Figure 4, when attempting to overlap Tree

1 and Tree 2, link (4 → 3) is being used by both trees

at different timestep which limits overlapping of chunks.

• We need to build the maximum number of disjoint

trees possible to minimize data sending in each timestep

and maximize link utilization. For 1D mesh, maximum

number of possible disjoint tree is always 2. As 2D mesh

has more links we should focus on building more disjoint

trees.

B. Disjoint Tree Formation in 2D mesh

To make better use of the available links and implement

an overlapping approach for parallel AllReduce of multiple

chunks, we can create multiple disjoint trees using the links

in a 2D mesh such that no two trees use a common link and

each tree contains all nodes. It is crucial for the trees to be

disjoint to avoid contention during broadcast and aggregation

of the chunks. However, there are certain considerations to

address while forming these disjoint trees for a 2D mesh:

• Maximum Possible Disjoint Tree is 3: In a 2D mesh,

due to link scarcity, it is not feasible to build more than

three disjoint trees. We know that, any node in a mesh

topology can have at most 4 outgoing/incoming links.

As each node needs to be connected to all of the disjoint

trees, we can’t build more than 4 disjoint trees by any

means. However, the total links available in an n×n mesh

is 4n2−4n. If we want to form 4 disjoint trees, we need

total 4n2−4 links as each tree requires n2−1 links. For

any n > 1, the required links to form 4 disjoint trees are

greater than available links in the topology, which makes

forming four disjoint trees in a 2D mesh impossible.

• Unavailability of 3 Disjoint Trees with All Nodes: To

have three disjoint trees, each node should have at least

three outgoing links. However, in a 2D mesh, all corner

nodes have at most two outgoing links. One possible

workaround can be forming disjoint trees rooted at the

corner nodes so that we don’t need to connect the corner

nodes in their own tree and use available two links to

make connections in two other trees. However, even with

this approach, when we use three out of the four corner

nodes as roots to build disjoint trees, the remaining corner

node still needs to send data to three trees, requiring three

outgoing links, which is unavailable.

To overcome these challenges, we propose a solution that

involves training the DNN with n2−1 nodes. Specifically, one

corner node will not be used during the training phase, and

the other three nodes will form three disjoint trees. By doing

this, we can effectively form three trees using all the available

links, and since no corner node needs to use three links, the

trees can be made disjoint to enable parallel communication

of multiple chunks. Although using one less node reduces the

mini-batch size during training, leading to increased training

time, the gains in AllReduce speedup outweigh this drawback

significantly.

C. TTO: Three Tree AllReduce

Fig. 6: An example of three disjoint tree formation in a 3× 3
mesh. We use node 1, 3 and 9 to form the trees and excluded

node 7 for training. Unused links after forming each tree are

also shown.

Figure 6 demonstrates the process of forming three disjoint

trees in a 2D mesh. Out of the four corner nodes, three

nodes(node 1, 3 and 9) are selected as tree roots, while one

node is excluded(node 7) from the training. The steps to form

the trees are as follows:

1) Tree rooted at 1: First, we traverse in y-axis of node 1

to connect all reachable nodes. Here, by traversing in y-

axis, we connect 4 with 1 and 7 with 4. Then, we connect

nodes that are in the x-axis of nodes 1, 4, and 7, and

add them to the tree using the appropriate connections.

The unused links after forming the tree rooted at 1 are

shown in Figure 6(a). To note here, although we are

not using node 7 for training, we are using its available

connections to form disjoint trees.

2) Tree rooted at 9: The process of forming the tree rooted

at 9 is similar to tree rooted at 1. However, here we

connect nodes that are in the x-axis first, and then the

nodes which are in the y-axis. The unused links after

forming this tree are shown in Figure 6(b).

3) Tree rooted at 3: For the last tree, we can now consider

the topology as an undirected graph and apply Breadth-

first search(BFS) starting at node 3. We stop when all
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the nodes except the excluded node(node 7) is connected

to the graph.

It’s important to note that although we illustrate tree formation

approach with a 3x3 mesh, this procedure can be applied to

meshes of any dimensions. The procedure to form the trees

for TTO is outlined in Algorithm 2. In general, for an n×m
mesh, we designate nodes 1, n, and nm as the roots for the

three disjoint trees and node n(m − 1) + 1 as the excluded

node4(Line 1). For the tree rooted at node 1, we connect nodes

in the y − axis first and then in the x − axis (Lines 5-8).

Similarly, for the tree rooted at node nm, connections are

made in the x− axis first and then in the y− axis (Lines 5-

8). Lastly, for the tree rooted at n, all nodes are connected via

BFS traversal starting from n, except for node n(m− 1) + 1
(Line 11). The complexity of forming all the trees is O(n),
and this process ensures that the tree heights are 2n−2, which

is the lowest possible height. Finally, if there are C chunks

and tree height is H , TTO requires H + C − 1 timesteps for

the ReduceScatter and AllGather stage.

Algorithm 2 Forming Disjoint Trees for TTO

Input: Dimensions of mesh n, m
Output: Three disjoint trees

1: roots = [1, n, nm], trees = [] � List of root nodes and trees
2: for each root ∈ roots do
3: tree = [] � List to store tree
4: if root == 1 or root == nm then
5: t1, t2 = (y-axis, x-axis) if root is 1, (x-axis, y-axis)

otherwise � Traverse order for node 1 and nm
6: tree = [root] � Add root to tree
7: for t = t1, t2 do
8: Add all the nodes reachable from tree by adding links

that traverse in t direction only
9: end for

10: else
11: Add all nodes in tree traversed by BFS starting from

root.
12: end if
13: Add tree in trees
14: end for
15: return trees

To generate the ReduceScatter schedule, we traverse the

formed trees bottom-up manner to schedule all nodes for

chunk 1. As multiple chunks can overlap, when one node

finishes sending data for a chunk, it can immediately start

sending the next chunk using the available link. For example,

after node 9 completes sending chunk 1 to node 8, it can

immediately begin sending chunk 2(Figure 6) and so on. Once

the full ReduceScatter schedule for all chunks is obtained, we

initiate the AllGather in a similar manner, but the AllGather

traversal is done in a top-down fashion of the constructed trees.

Figure 7 shows the improvement achieved by TTO over

MultiTree, in a 3 × 3 mesh with 5 chunks. We can see that,

with only 5 chunks, TTO can finish 6 timesteps before Multi-

Tree. This improvement significantly speeds up the AllReduce

4Here, we number nodes in a row-major order, starting from 1

Fig. 7: The improvement of TTO over the MultiTree algorithm

in a 3×3 mesh with 5 chunks. MultiTree takes 6 timesteps per

chunk, totalling 30 timesteps. In contrast, TTO tree height is

4(Figure 6) and in each step 3 times more data is sent, resulting

in 12 timesteps per chunk. But by overlapping, TTO is finished

within 24 timesteps with improvement of 6 timesteps.

process, which is particularly advantageous when dealing with

a high number of chunks typically found in DNN training.

VI. METHODOLOGY

A. Simulation

In our experiments, we utilize SCALE-Sim [58] and Book-

Sim [37] for training time simulation and interconnect mod-

eling, respectively. We extend SCALE-Sim to support both

forward and backward propagation of DNN training with

output stationary dataflow. Each chiplet in our system consists

of 4 × 4 PEs where each PE has a 256 × 256 MAC array,

unless stated otherwise. These chiplets are used for both

training and aggregation during the AllReduce stage. To ensure

interaction between the network and chiplets, we implement a

Python interface connecting SCALE-Sim and BookSim, which

schedules all the benchmarks in same configuration. Double

buffering and sufficient memory bandwidth are assumed for

each chiplet to achieve the highest compute throughput. The

network buffer size is configured to cover the credit round-trip

loop, and the network bandwidth is set at 25GBps which is

aligned with Simba [62]. Both the chiplet and router clock

frequency are configured at 1GHz, and virtual cut-through is

employed for flow control within the network. The system

configuration parameters are listed in Table II. We run all

of our benchmarks with both even and odd-sized mesh, in

small scale(16-node and 25-node) and large scale(64-node and

81-node) systems. To show that our proposed schemes are

scalable enough, we run a scalability study starting from 9

chiplets to 256 chiplets.

B. Workloads

To show the effectiveness and versatility of our proposed

schemes, we conduct a synthetic study of AllReduce band-

width usage, varying the AllReduce data size from 1MB to

1GB, and evaluate the scalability using a total AllReduce data

size of 375KB×N , where N is the total number of chiplets

in the topology. Additionally, we evaluate the performance

of our systems with real-life DNN models from SCALE-

Sim, including AlexNet [41], AlphaGoZero [64], Faster-

RCNN [19], GoogLeNet [70], NCF-Recommendation(NCF)

[28], ResNet152 [27], and Transformer [76]. The evaluation
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TABLE II: System Configuration

Parameters Configurations

Chiplet
Number of PEs 4× 4

Clock Frequency 1GHz

PE
MAC Array 256× 256

Precision 32 bits
Dataflow Output Stationary

Network

Bandwidth 25GBps
Packet Size 8192B

Flit Size 512B
Per Flit Latency 21ns

Router Clock Frequency 1GHz
Topology Mesh

Flow Control Virtual Cut-Through
Number of VCs 4

VC Buffer Depth 318 flits

is performed with a mini-batch size of 16 × N for an N -

chiplet system, corresponding to 16 samples per chiplet, and

we measure the training time required for one epoch. To

ensure a fair comparison, we account for the fact that the

TTO algorithm utilizes N−1 chiplets for training, while other

algorithms use all N chiplets. For this purpose, we consider

the full epoch time of a training set. The training set size is set

to 1.2 million, similar to ImageNet [41], a leading dataset in

computer vision. By calculating the total iterations based on

the mini-batch sizes for each scheme, we obtain the training

time of one epoch. It is essential to note that our proposed

schemes have no impact on the accuracy or convergence of

a given neural network, as they do not alter the computation

ordering. Additionally, the trade-off between mini-batch size,

training time, and model accuracy is beyond the scope of

this research. We use default chunk size as 98304B for N -

chiplet systems in TTO to ensure proper aggregation during

ReduceScatter and maintain efficient overlapping.

C. Target Benchmarks

We evaluate both of our schemes with the following state-

of-the-art baseline algorithms for mesh topology.

• Ring: Unidirectional Ring AllReduce algorithm [18].

• Ring-2D: Two dimensional Hierarchical Ring AllRe-

duce algorithm [84].

• DBTree: Topology-oblivious Double Binary Tree algo-

rithm [59].

• MultiTree: Tree-based topology-aware MultiTree algo-

rithm [31].

• RingBiEven: Bidirectional Ring AllReduce algorithm for

even-sized mesh topology.

Experiments for Ring, Ring-2D, DBTree, MultiTree and

TTO are run over all topologies. However, RingBiEven is for

even-sized mesh, while RingBiOdd is exclusively applicable

to odd-sized mesh topologies.

VII. RESULTS

In this section, we show the performance of our proposed al-

gorithms by evaluating bandwidth utilization, DNN runtimes,

link utilization, and scalability across multiple mesh sizes.

A. AllReduce Bandwidth Utilization

To showcase the superiority of our proposed schemes, we

establish networks of size 4× 4, 5× 5, 8× 8, and 9× 9 in the

mesh topology. RingBiOdd, designed for odd-sized meshes, is

evaluated on 5× 5 and 9× 9 networks, while RingBiEven is

assessed on 4× 4 and 8× 8 networks. All other benchmarks

are tested on all networks. We vary the data size from 1MB

to 1GB, encompassing both small and large AllReduce data

scenarios, and record the simulation time. By dividing the

AllReduce data size by the simulation time, we obtain the

bandwidth usage. While TTO distributes data among N-1

nodes, we concentrate solely on the AllReduce time here,

without considering the potential increase in training time due

to the usage of 1 less chiplet. In section VII-C, we address

this concern by presenting the end-to-end training time for one

epoch of DNN training. The results of AllReduce bandwidth

utilization are showed in Figure 8.

Among all the benchmarks, TTO consistently outperforms

others across all topologies. This advantage arises from the

efficient utilization of links achieved by the three disjoint

trees, which allows overlapping data chunks and ensures that

most links remain occupied during both the ReduceScatter and

AllGather stages.

For both even and odd-sized mesh, the Bidirectional Ring

AllReduce algorithms, namely RingBiEven and RingBiOdd,

consistently outperform all baseline algorithms. RingBiOdd,

designed for odd-sized mesh, achieves similar bandwidth

usage as RingBiEven, despite sending slightly more data

(D/(N − 1) in each step) compared to D/N for an N -

chiplet-based system. The fact that RingBiOdd maintains the

same hop count for the AllReduce algorithm contributes to

its comparable performance with RingBiEven. Moreover, both

algorithms demonstrate superior performance compared to

MultiTree because the bidirectional ring exhibits higher link

utilization, giving it an edge over MultiTree.

Among all the topologies, DBTree shows the worst per-

formance due to its topology-oblivious nature and poor map-

ping of tree nodes to the network, resulting in significant

contention. Additionally, Ring AllReduce has limitations due

to its unidirectional ring, which prevents it from utilizing

bidirectional interconnects. Similarly, Ring-2D performs con-

siderably worse than other benchmarks for two reasons. First,

for any hierarchical algorithm, transmitting large data in the

ReduceScatter and AllGather stages in the first dimension

slows down the AllReduce process. Second, in a 1D mesh, the

latency between two nodes of a ring is primarily determined

by the slowest pair of nodes, which are typically the farthest

nodes in the topology. Overall, DBTree, Ring, and Ring-2D

are not suitable AllReduce algorithm for mesh topology.

In general, when compared to Ring, Ring-2D, DBTree,

MultiTree, and Bidirectional Ring AllReduce, TTO exhibits

an average speedup of 3.2×, 2.6×, 5.3×, 1.6×, and 1.4×
respectively. On the other hand, RingBiOdd demonstrates an

average speedup of 1.9×, 1.75×, 3.7× and 1.1×, compared

to Ring, Ring-2D, DBTree and MultiTree.
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Fig. 8: AllReduce bandwidth with various data size for 4× 4, 5× 5, 8× 8 and 9× 9 mesh

B. Scalability Results

In a scalability test with chiplets ranging from 9 to 256, we

used AllReduce data sized at 375 × N KB, where N is the

chiplet number. The results, shown in Figure 9, use synthetic

data, ignoring computation time increase for TTO. The left

figure shows even-sized mesh scalability, while the right

displays odd-sized mesh. Communication time is normalized

to Ring AllReduce’s performance in a 4 × 4 mesh for even-

sized and a 3× 3 mesh for odd-sized.
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Fig. 9: Scalability with 375 × N KB AllReduce data size

normalized to Ring AllReduce of 4×4 mesh and 3×3 mesh for

even-sized and odd-sized mesh, respectively, where N is the

number of nodes.

Across all topologies, we observe that all algorithms scale

linearly with the number of nodes, although they sustain

different linear factors, with TTO being the best and Ring

AllReduce the worst in terms of performance. The superiority

of TTO can be attributed to its efficient network usage and

chunk overlapping. The three disjoint trees in TTO utilize the

majority of links in any topology, and the parallel movement

of chunks fully exploit the network with proper chunk size,

thereby preventing performance degradation with increasing

chiplets. Additionally, TTO ensures lowest tree heights pos-

sible, resulting in the lowest increase in communication hops

across all benchmarks as the mesh size increases.

RingBiOdd shows consistent scaling performance across all

dimensions, surpassing the Ring, Ring-2D, and MultiTree. Ad-

ditionally, RingBiOdd follows a similar trend to RingBiEven

while scaling out and nearly halves the communication time

compared to the Unidirectional Ring. This positions Ring-

BiOdd as an excellent alternative to use when the Bidirectional

Ring AllReduce algorithm is needed, and the mesh size is odd.

Ring and Ring-2D scale linearly but perform poorly. Long

ring length for unidirectional Ring increases latency and

worsens performance with higher dimensions. Ring-2D’s per-

formance drops with more chiplets because of the imperfect

1D ring. While MultiTree scales linearly, its longer tree

height underperforms compared to TTO and Bidirectional

Ring AllReduce. In summary, RingBiOdd achieves around

1.1× average speedup over MultiTree while TTO exceeds

all the benchmarks and shows 2.8×, 1.6× and 1.4× average

speedup over Ring, MultiTree and Bidirectional Ring AllRe-

duce respectively.

C. Model Results

To assess the performance of our schemes under real train-

ing workloads, we conduct simulations to measure the training

time for one epoch using 8x8 and 9x9 mesh topologies with

7 real-world DNN models. For this experiment, we assume

a training data size of 1.2M, similar to ImageNet [41]. To

effectively utilize the processing element (PE) performance,

we use a mini-batch size of 16 × N for an N -node sys-

tem. Consequently, the mini-batch sizes for the 8x8 and 9x9

topologies are 1024 and 1296, respectively, for all benchmarks

except TTO, which uses 1008 and 1280 as mini-batch sizes

due to utilizing one less chiplet for training. To calculate the

time for one epoch, we first divide the training data by the

mini-batch size to obtain the number of iterations. Next, we

multiply the iteration time (training time + AllReduce time

for a mini-batch) with the total iterations to finally obtain the

total training time for one epoch. As TTO involves one less

chiplet for training, it has relatively more iterations than the

other benchmarks. The results are presented in Figures 10a

and 10b for 8x8 and 9x9 mesh topologies, respectively.

Most of the models in our experiments have a

high communication-to-computation ratio. AlexNet is a

computation-intensive model but has less parameters which

make its training time computation dominant. On the other

hand, models like GoogLeNet, ResNet152, which are also

computation-intensive but have a higher number of parameters,

experience more dominant communication time. Models like
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(a) Training time breakdown for 8× 8 mesh
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(b) Training time breakdown for 9× 9 mesh

Fig. 10: Training time breakdown for one epoch over popular DNN models on 8×8 and 9×9 mesh. AllReduce, Forward+Back-

Propagation and End-to-end training speedup normalized to Ring AllReduce results.

NCF Recommendation and Transformer, with embedding and

attention layers, are naturally communication-intensive.

Among the proposed schemes, TTO demonstrates the

highest speedup compared to all benchmarks. On average,

TTO achieves average speedups of 1.04−1.5× and 1.1−1.69×
for all models over MultiTree and Bidirectional Ring AllRe-

duce, respectively. Although TTO requires more iterations to

complete a single epoch, its significant AllReduce speedup

outweighs the computation time increase, resulting in substan-

tial training time reduction. With larger topologies, the impact

of sacrificing one chiplet is reduced, giving TTO more speedup

over all the benchmarks.

Finally, RingBiOdd achieves average speedups of 1.29 −
1.97×, 1.24 − 1.9×, 4.1 − 7.3×, 0.88 − 1.09× over Ring,

Ring-2D, DTree, and MultiTree, respectively. With larger

topologies, MultiTree creates more balanced trees, giving it

a slight advantage over Bidirectional Ring AllReduce in some

cases. Overall, our proposed schemes show more prominent

results when the communication is dominant, as seen in

models like Transformer, ResNet152, NCF, etc. In all cases,

DBTree performs poorly among all benchmarks due to its

poor mapping of tree nodes with actual physical topology.

Unidirectional Ring and Ring-2D also perform poorly due

to the long latency of the formed ring and unavailability of

perfect ring in 1D mesh.

To examine the effect of overlapping computation and com-

munication on reducing AllReduce overhead, we experiment

with a layer-wise AllReduce approach shown in Figure 11.

For compute-intensive workloads like AlexNet, FasterRCNN

and GoogLeNet, there is substantial potential for overlap

between computation and AllReduce, effectively reducing

the communication bottleneck. However, in communication-

intensive networks like NCF and Transformer with exten-

sive embedding and attention layers, only minimal overlap

occurs, making communication a bottleneck. Overall, with

overlap, TTO achieves speedups ranging from 0.99 − 2.5×
over Ring, 0.99 − 2.35× over Ring-2D, 1.03 − 5.3× over

DTree, 0.98 − 1.54× over MultiTree, and 0.99 − 1.6× over

RingBiEven.

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

Ri
ng

Ri
ng

-2
D

D
Tr

ee
M

ul
tit

re
e

Ri
ng

Bi
Ev

en
TT

O

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 T
ra

in
in

g 
Ti

m
e

AlexNet AlphaGoZero FasterRCNN GoogLeNet NCF ResNet152 Transformer

Communication Computation-Communication Overlap Computation

Fig. 11: Training time breakdown normalized to Ring AllRe-

duce using overlapped training approach with layer-wise

AllReduce on 8× 8 mesh and configurations in II.

D. Link Utilization
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Fig. 12: Link utilization percentage of all benchmarks in a

9× 9 mesh with 256MB AllReduce data.

In Figure 12, we present an analysis of the link utilization

percentage for various benchmarks in a 9 × 9 mesh with

256MB of AllReduce data. We can see that, TTO consistently

maintains around 83% link utilization throughout the entire

AllReduce phase. Due to the overlapping of chunks, all the

links used in the trees are always utilized, which results in

high link utilization rate.

We can see that, RingBiOdd achieves about 57% link

utilization, comparable to Bidirectional Ring AllReduce in

even-sized meshes, while Ring AllReduce only reaches 30%.
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Although MultiTree shows peak utilization at 85% due to its

simultaneous 64-tree usage for some part of the execution, but

averages 55-60%. Ring-2D has higher link usage but depicts

extended AllReduce time due to more data transmission and

lack of a perfect ring in 1D mesh. Overall, TTO achieves 20-

50% more link utilization across all the benchmarks.

VIII. DISCUSSIONS

A. Performance of TTO in an MCM-based Accelerator

In this section, we evaluate TTO using the MCM-based

Simba accelerator, featuring 36 chiplets in a 6×6 mesh. Each

chiplet contains 16 PEs with an 8× 8 MAC array. We present

results for 16× 16 and 32× 32 MAC arrays instead of 8× 8,

as smaller ones is not a good fit for data parallel training

due to higher computation requirements. Recent studies like

SPRINT [43] and SPACX [44] further support the potential of

larger MAC arrays and more PEs in MCMs.

From Figure 13, we can see that as the MAC array

size decreases, computation dominates over communication

time, which reduces the end to end speedup. As the model

size remains consistent regardless of the MAC array size,

TTO achieves similar AllReduce speedup across different

MAC array sizes. For both 32 × 32 and 16 × 16 MAC array

sizes, TTO achieves AllReduce speedups of approximately

2.76×, 2.52×, 9.7×, 1.64×, and 1.41× over Ring, Ring-2D,

DBTree, MultiTree, and RingBiEven respectively.

However, smaller MAC arrays considerably increase the

time needed for both forward and backward propagation,

which then takes up a significant portion of the overall training

duration. As a result, the end-to-end training speedup for one

iteration with 32×32 and 16×16 MAC arrays range between

0.97 − 1.8×, 0.97 − 1.73×, 0.98 − 5.56×, 0.97 − 1.31×,

and 0.97 − 1.17× over Ring, Ring-2D, DBTree, MultiTree,

and RingBiEven respectively, whereas smaller MAC arrays

show comparatively less speedup. There’s a slight reduction

in overall speedup for compute-intensive models like AlexNet,

FasterRCNN, GoogleNet, and AlphaGoZero due to the use of

one less chiplet in TTO. In general, TTO delivers the most

significant performance boost for models with higher commu-

nication to computation ratio such as NCF Recommendation

and Transformer.

B. Overhead of Using One Less Chiplet for Training

To assess the impact of using one less chiplet for TTO, we

employ the following equations to calculate its performance

gain in an N -chiplet system.

I base, I tto = � D

(N ∗ d)�, �
D

((N − 1) ∗ d)� (1)

gain = I base ∗ (T + C b)− I tto ∗ (T + C t) (2)

Let D represent the training dataset size, d be the number

of data processed per chiplet (assuming equal distribution of

data in each chiplet), and T represent the Forward and Back-

Propagation time for a single chiplet. I base is the number of

iterations for one epoch in any baseline AllReduce algorithm

using all chiplets, and I tto is the number of iterations for

one epoch in TTO. Additionally, C b and C t represent the

AllReduce time for the base algorithm and TTO, respectively.

To demonstrate the superiority of TTO, even with one less

chiplet, we compare it with base algorithm RingBiEven and

explore the overhead of using one less chiplet. Our analysis

uses Resnet152 with an 8 × 8 mesh topology, which has

total 64 chiplets(N = 64). The reference dataset is ImageNet

with 1281167 training image(D = 1281167). The mini-batch

sizes(N ∗ d) for RingBiEven and TTO are 1024 and 1008,

respectively, using 16×N for the mini-batch size.

From equation 1, the total iterations for RingBiEven and

TTO are 1252 and 1271, respectively. TTO requires an over-

head of 19 additional iterations compared to RingBiEven.

From our experiments, we obtain T = 1832399, Cb =
10350425, and C t = 7076228. Plugging these values into

equation 2, we find a total performance gain of 3930030731,

i.e., 44% improvement. The overlapping of chunks in 3 disjoint

trees in TTO results in a significant AllReduce speedup and

outweighs the overhead due to increased iterations, overall

leads to superior end-to-end training performance. Moreover,

as the mesh size increases, the overhead of not using one

chiplet decreases, making TTO an excellent AllReduce algo-

rithm for communication-intensive and large-sized mesh.

However, TTO might not exhibit significant speedup over

baseline algorithms in certain cases:

1) In very small mesh topologies: The iteration count

is inversely proportional to the number of chiplets in

the system. In small meshes, excluding one chiplet

increases iteration overhead considerably compared to

larger meshes, potentially limiting TTO’s performance.

2) For Computation-intensive models: Usage of one

less chiplet also raises training time overhead. For

computation-intensive DNN models, it raises training

time significantly, offsetting the AllReduce speedup.

3) Small MAC array in PE: If the underlying hardware in

each PE has a smaller number of MAC arrays, it could

increase training time and make training computation-

bound, negatively affecting TTO’s performance.

C. Optimal Chunk Size for TTO

In Figure 14, we demonstrate the impact of different chunk

sizes on bandwidth usage in an 8 × 8 mesh with 128MB of

data by varying chunk size from 12KB to 6MB. TTO achieves

higher bandwidth usage when the chunk size is relatively

small, specifically in the range of 96KB to 192KB. Since

the packet size is 8KB, these chunk sizes allow for efficient

utilization of links without packet fragmentation and facilitate

efficient aggregation in PEs. During AllReduce, the bandwidth

usage for TTO remains consistently high due to continuous

overlapping of other chunks. When chunk size increases, the

total number of chunks decreases, resulting in reduced overlap

opportunity, ultimately leading to performance degradation.

IX. RELATED WORKS

Numerous studies have been conducted on collective com-

munications in high-performance computing (HPC) with a fo-
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Fig. 13: Training time breakdown for one epoch over popular DNN models on Simba with 6 × 6 mesh. AllReduce,

Forward+Back-Propagation and End-to-end training speedup normalized to Ring AllReduce results.
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Fig. 14: Impact of different chunk sizes over TTO in an 8×8
mesh with 128MB of data.

cus on the MPI communication interface [16]. Various imple-

mentations of collective communication in the MPI interface

[7], [52] have been proposed in the HPC domain, optimized for

different message sizes [74]. While these algorithms remain

applicable to deep-learning workloads, collectives in HPC

typically involve small message sizes (few KB-MB), unlike

deep learning workloads that deal with larger messages (10s

of MB-GB) that lie in the critical path [40].

Numerous AllReduce algorithms, such as ring and DBTree,

have been implemented in different communication libraries

like NCCL [48] and Horovod [60]. Many works also con-

sider the physical topology hierarchy to perform localized

reduction/broadcast in each network hierarchy [12], [46], [56],

[78]. For instance, Blink [78] generates efficient collective

algorithms based on the underlying network topology using

a spanning tree packing approach. Themis [56] proposes

an AllReduce algorithm for heterogeneous systems through

dynamic chunk scheduling. BlueConnect [12] is a communi-

cation library for distributed DL on GPU-based platforms and

breaks down a single AllReduce operation into parallelizable

ReduceScatter and AllGather operations. PLink [46] is a

collective scheme designed to handle heterogeneous networks

and variable performance of public cloud platforms.

However, most of these works primarily focus on off-chip

interconnects, such as connections between GPUs or target

heterogeneous networks. In contrast, our proposed schemes

are intended for MCMs, where chiplets are connected by on-

chip networks, and the underlying topology is a mesh with

restricted connections between chiplets. Notably, TTO is the

first method to propose overlapping chunks for maximum

bandwidth utilization in a mesh topology.

C-Cube [13], a recently proposed AllReduce algorithm,

improves the performance of the DBTree implemented in

NCCL by overlapping ReduceScatter and AllGather phases

using extra connections in the Nvidia DGX-1 [1] system.

However, that approach is tailored for the Nvidia DGX-1,

and the extra connections they rely on are not available in

a mesh topology like ours.

X. CONCLUSION

This paper proposes RingBiOdd and TTO, two algorithms

addressing inefficiency in existing AllReduce approaches for

mesh topology in MCMs. RingBiOdd enables Bidirectional

Ring AllReduce for odd-sized meshes, while TTO employs

a tree-based approach to overlap data chunks and improve

network utilization. Compared to unidirectional Ring AllRe-

duce and MultiTree, RingBiOdd achieves 50% and 8% training

time reduction, respectively, while TTO outperforms Multi-

Tree and Bidirectional Ring algorithms, with 33% and 29%
training time reduction for seven DNN models, respectively.
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APPENDIX

A. Abstract

This section is mainly the guideline to perform artifact

evaluation for this paper. Most of the information to reproduce

the results are in the readme.md file of the repository. We first

present the check-list for the evaluation. Then we discuss the

hardware and software dependencies. Finally, installation and

experiment workflow shows how to setup the environment and

use the scripts to perform detailed validation. It is posisble to

reproduce all the results of the paper following the guideline

of readme.md file.

B. Artifact check-list (meta-information)
• Program: Python = 3.7, ScaleSim, BookSim2
• Run-time environment: Ubuntu = 22.04
• Hardware: 1 machine with Ubuntu = 22.04
• Output: Json files containing simulation results
• Experiments: Bandwidth utilization, scalability results, per-

formance of DNN benchmarks
• How much disk space required (approximately)?: Around

20GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Around 15 minutes
• How much time is needed to complete experiments (approx-

imately)?: Usually 10 minutes to 48 hours per simulation.
Several days might take for all experiments. Parallel simu-
lation recommended

• Publicly available?: Yes.
• Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.10109597

C. Description

1) How to access: The code is available at

https://doi.org/10.5281/zenodo.10109597. It contains a

zip file. Please unzip the file for the final code.

2) Hardware dependencies: A single machine can handle

the individual simulation. However, to concurrently execute

multiple simulations and replicate all results efficiently, it is

recommended to use a machine with many cores or use a

server. We don’t need GPU for our simulation.

3) Software dependencies: We ran our experiments on the

Ubuntu 22.04 LTS operating system, but other versions of

Ubuntu should also work. Python is a prerequisite for our

simulation. Further information on all software dependencies

can be found in the readme.md file.

D. Installation

Please see the readme.md file of the repository, which

contains a detailed step-by-step “setup” guide.

E. Evaluation and expected results

Instructions for running the experiments and generating

the results of this paper can be found in the readme.md

file. Specifically, we offer all simulation results, along with

scripts to create the figures presented in the paper. Results are

stored in the HPCA 2024 final folder, and the Python scripts

for generating graphs are located in the utils/python scripts
folder. Additionally, we provide scripts to reproduce all output

files of our simulation in the utils/run scripts folder. Since

each of these shell scripts initiates multiple simultaneous

simulations in the background, it is recommended to use

machines with a higher number of cores. The results of new

simulation will be saved in the HPCA 2024 folder.
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